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Seit es Begehrlichkeiten zwischen Lebewesen gibt, verschlieen oder verstecken wir unsere
Besitztiimer, um sie vor dem Zugriff Anderer zu schiitzen; angefangen vom Hund, der
seinen Knochen im Garten vergréabt oder dem Nashornvogel, der seine komplette Familie
in einem Baum einmauert, bis hin zu atombombengeschiitzten Hochsicherheitstresoren,
in denen unser Gold lagert oder Terroristenchefs, die in weltweit ausgestrahlten Videos
verschliisselte Botschaften verstecken.

1 ,Ich bin ein verschliisselter Prinz ...

Gerade das letzte Beispiel zeigt, dass es in unserer Zeit immer wichtiger zu werden
scheint, auch immaterielle Giiter (Daten, Informationen, Nachrichten, . ..) zu schiitzen,
beziehungsweise auf der anderen Seite zu versuchen, diesen Schutz zu durchbrechen. Die
Wissenschaft, die sich mit dem Verschliisseln einer Nachricht beschéftigt, heifit Krypto-
graphie; die Gegenseite (und dies konnen durchaus ,,die Guten* sein) benutzt Methoden
der Kryptanalyse, um die Verschliisselung zu brechen und so an die begehrte Nachricht
zu gelangen.
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Abbildung 1: Symmetrische Ver- und Entschliisselung mit dem gleichen Schliissel

In Abbildung 1 ist dargestellt, wie mittels eines geheimen Schliissels eine lesbare Nach-



2 Analytisch Eftektiv Sicher

richt (Klartext) zu unlesbarem Chiffretext verschliisselt wird und wie dieser verschliissel-
te Text spiter mit dem gleichen Schliissel wieder in den lesbaren Originaltext entschliis-
selt wird. Die Sicherheit solch eines symmetrischen Algorithmus liegt dabei verstéandli-
cherweise in der Geheimhaltung des Schliissels. Jeder, der den Schliissel besitzt, kann
die verschliisselte Nachricht entschliisseln. Sollen Ver- und Entschliisselung beispielswei-
se von unterschiedlichen Personen an unterschiedlichen Orten durchgefiihrt werden, so
muss ein sicherer Kanal (Bote, personliches Gesprich, ...) gefunden werden, iiber den
der geheime Schliissel ausgetauscht werden kann.

Da aber gerade der Transport eines Schliissels ein nicht zu unterschétzendes Sicher-
heitsrisiko darstellt, sind in den letzten zehn Jahren asymmetrische Algorithmen mit
offentlichem Schliissel (public key) zur Bliite gelangt, bei denen die Verschliisselung
mit einem Offentlichen, fiir jedermann zugénglichen Schliissel erfolgt, wahrend zur Ent-
schliisselung ein privater geheimer Schliissel verwendet wird, der sich natiirlich nicht,
oder nur mit unvertretbar hohem Aufwand, aus dem offentlichen Schliissel berechnen
lasst. Solche Public-Key-Algorithmen klinken sich mittlerweile recht nahtlos und trans-
parent beispielsweise in gingige E-Mail-Programme ein; das Ver- bzw. Entschliisseln
einer E-Mail geschieht mit Plug-ins wie PGP (Pretty Good Privacy) kraft eines einzigen
Mausklicks [1].

Wenn nun also die Sicherheit einer Chiffrierung ausschliefllich von der Geheimhaltung
des Schliissels abhéngt, macht es auf der anderen Seite natiirlich Sinn, den Algorithmus
selbst moglichst breit zu verdffentlichen, um méglichst vielen Experten die Méglichkeit
zu geben, moglichst viele Fehler und Schwachstellen moglichst schnell zu finden und aus-
zumerzen. Aus diesem Grund veroffentlichte das amerikanische NBS (National Bureau
of Standards) schon im Jahre 1975 die Einzelheiten des DES (Data Encryption Stan-
dard), der, nach ein paar turbulenten Workshops, zwei Jahre spéter als Bundesstandard
anerkannt wurde und seitdem einen unglaublichen weltweiten Siegeszug in unzéhligen
kryptographischen Anwendungen gefeiert hat.

Erst mit den in der letzten Dekade entwickelten Verfahren der differenziellen und linea-
ren Kryptanalyse, die sich aulerdem noch der sich nach dem Moore’schen Gesetz alle
18 Monate verdoppelnden Rechenleistung bedienen durften, konnte der DES endgiiltig
von seinem Thron gestiirzt werden. Einem Algorithmus, der heute mit handelsiiblicher
Hardware in ein paar Stunden geknackt werden kann, vertraut man eben vielleicht doch
nicht unbedingt gerne sein Bankguthaben oder das Leben seiner Soldaten an.

2  Analytisch Effektiv Sicher

Einen weiteren unangenehmen Beigeschmack erzeugte von Anbeginn an die Tatsache,
dass im DES Transformationstabellen (die so genannten S-Boxes) verwendet werden, die
in einer geheimen Zusammenarbeit von IBM und der NSA (National Security Agency)



3 Jetzt geht’s rund

entwickelt wurden und die zwar willkiirlich und zuféllig aussehen, die aber nach Aussage
vieler Kryptanalytiker sehr sorgféiltig konstruiert wurden; méglicherweise mit dem nicht
ganz uneigenniitzigen Ziel, den DES durch eine ,Hintertiir” leichter knacken zu koénnen.

Dies war die Geburtsstunde des designierten DES-Nachfolgers: Am 26. November 2001
veroffentlichte das NIST (National Institute of Standards and Technology) die Spezifi-
kation des AES (Advanced Encryption Standard) [2]; verbunden mit der berechtigten
Hoffnung, dass der AES am grofien Erfolg seines Vorgéngers ankniipfen und in den kom-
menden zwanzig Jahren seinen Weg in die meisten Telefone, Chipkarten, Festplatten,
Neokorteximplantate, ... finden wird.

Der AES ist, genau wie sein Wegbereiter, ein Blockalgorithmus; der zu verschliisselnde
Klartext wird also in Blocke von jeweils 128 Bits unterteilt, was bei acht Bits pro Byte
bedeutet, dass immer 16 Zeichen (Bytes) gleichzeitig verarbeitet werden. Dazu werden
die Zeichen, wie in Abbildung 2 dargestellt, in einem ersten Schritt spaltenweise in die
so genannte Zustandsmatrix einsortiert.
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Abbildung 2: 16 Bytes bilden eine Zustandsmatrix

3 Jetzt geht’s rund

Die Zustandsmatrix wird dann bei der Verschliisselung in insgesamt elf Runden un-
ter Benutzung des Schliissels und der wiederholten Anwendung verschiedener Transfor-
mationen so griindlich verunstaltet, dass das analytische Riickrechnen zur Originalzu-
standsmatrix, ohne Kenntnis des Schliissels, von allen Kryptanalytikern (momentan) als
unmoglich bezeichnet wird:



4 1+1=0

% Erste Runde
state = add_round_key (state, round_key)

% Runde 2 bis Runde 10
for i_round = 2 : 10
state = sub_bytes (state, s_box)
state = shift_rows (state)
state = mix_columns (state, poly_mat)
state = add_round_key (state, round_key)
end

% Letzte Runde

state = sub_bytes (state, s_box)
state = shift_rows (state)
state = add_round_key (state, round_key)

Tabelle 1: Die Verschliisselung geschieht in elf Runden

Auch was einen Brute-Force-Angriff anbelangt, also mal schnell alle moglichen Schliissel
auszuprobieren, haben Joan Daemen und Vincent Rijmen [3] aus dem Arger mit der
kurzen Schliissellange (56 Bit) des DES gelernt. Das NIST meint zu diesem Thema:

»Assuming that one could build a machine that could recover a DES key
in a second (i.e., try 2% keys per second), then it would take that machine
approximately 149 thousand-billion (149 trillion) years to crack a 128-bit
AES key. To put that into perspective, the universe is believed to be less
than 20 billion years old.“

Um auch fiir die néchsten Technologieschiibe gewappnet zu sein, wurden sogar noch Va-
rianten des AES mit 192 und 256 Bits definiert. Ob diese dann allerdings auch Quanten-
rechnern widerstehen, die alle Schliissel gleichzeitig testen oder riesigen ,, Think-tanks“, in
denen Myriaden von genmanipulierten Cracker-Bakterien ihren Lebenssinn darin sehen,
die in ihren Erbanlagen individuell abgelegten Schliissel an Kryptofutter zu versuchen,
mag die Zukunft zeigen.

4 1+1=0

Die erste Verschliisselungsrunde besteht, wie in Tabelle 1 dargestellt, nur aus einer ,,Ad-
dition* (add_round_key) der aktuellen Zustandsmatrix (state) und des aus dem Schliis-
sel abgeleiteten ersten Rundenschliissel (round_key), bei dem es sich ebenfalls um eine
4 x 4-Matrix handelt. Da die im AES verarbeiteten Bytes aber, wie in Kapitel 11 erldu-
tert, als Elemente eines Galois-Feldes aufgefasst werden, muss anstelle einer ,,normalen*



5 Alte Schachteln

Addition eine bit-weise Exklusiv-Oder-Verkniipfung der Elemente von Zustandsmatrix
und Rundenschliissel verwendet werden.

Und wéhrend nun herkémmliche Programmiersprachen fiir das elementweise xor-Verkniipfen
der Matrizen natiirlich gleich zwei in einander geschachtelte Schleifenkonstrukte erfor-
dern, schlagt an dieser Stelle Matlab’s Marvelous Matrix Manipulation Mastery mal
wieder gnadenlos zu: der Matlab-Befehl bitxor lédsst sich freundlicherweise nicht nur
auf Skalare sondern auch direkt auf Vektoren und Matrizen anwenden, so dass sich die
erste Verschliisselungsrunde unter Matlab in einer einzigen Zeile erledigen l&sst, indem
statt des Befehls add_round_key direkt bitxor eingesetzt wird.!

5 Alte Schachteln

Die Runden zwei bis elf verwenden als erste Verschleierungstaktik das Ersetzen (sub_bytes)
eines jeden Bytes der Zustandsmatrix mit Hilfe einer Ersetzungstabelle (s_box), die a
priori definiert ist und die nicht wie im Falle des DES in dubioser Weise willkiirlich zu-
rechtgebastelt wurde, sondern deterministisch reproduziert werden kann. Die dazu not-
wendigen Algorithmen wiirden allerdings ein wenig den Rahmen dieses Artikels sprengen,
sind aber in [2] definiert und in [1] ausfiihrlich erldautert.

Die S-Box besteht aus den algorithmisch angeordneten 256 Elementen des Galois-Feldes
GF(28), also den Zahlen von 0 bis 255, die iiblicherweise in Form einer 16 x 16-Matrix
hexadezimal dargestellt werden:

!Die vollstéindige Implementation des AES-Algorithmus in Matlab (m-Dateien und ausfiihrliche Do-
kumentation) finden Sie auf der AES-Seite des Autors [1] oder auf Matlab Central.



6 Links, zwo, drei, vier
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Tabelle 2: Ersetzungstabelle (S-Box)

Wenn nun beispielsweise ein Element der Zustandsmatrix den Wert 7 besitzt, so wird
diese 7 als Index in die S-Box aufgefasst, so dass dort der Wert c5,., = 1974, gefunden
(ja - das erste Element hat den Index 0) und somit die 7 in der Zustandsmatrix durch
den Wert 197 ersetzt wird.

Auch hier erlaubt es Matlab eleganterweise, das gleichzeitige Ersetzen aller Elemente
der Zustandsmatrix in einer einzigen Quelltextzeile auszudriicken, indem die komplette
Zustandsmatrix als Indexmatrix der S-Box verwendet wird.

6 Links, zwo, drei, vier

Die néchste in jeder Runde durchzufithrende Transformation (shift_rows) schiebt, wie
Abbildung 3 verdeutlicht, die zweite Zeile der Zustandsmatrix um einen Platz nach
links. Das dabei links herausfallende Element (s9;) wird auf den frei werdenden Platz
ganz rechts in der zweiten Zeile wieder hinein geschoben.



7 Alles dreht sich, alles bewegt sich

Abbildung 3: Zyklisches Verschieben der Zeilen der Zustandsmatrix

Auf die gleiche Weise werden die dritte und die vierte Zeile um zwei beziehungsweise
drei Plédtze nach links geschoben.

7 Alles dreht sich, alles bewegt sich

Die letzte in jeder Runde durchzufithrende Transformation der Zustandsmatrix hat den
aussagekraftigen Namen mix_columns bekommen und macht entsprechend auch ge-
nau dies. Aus der Multiplikation der Zustandsmatrix S mit einer vollbesetzten ,, Misch-
Matrix“ P von links resultiert eine neue Zustandsmatrix S’

SS=PeS

In der elementweisen Darstellung der Transformation

/ / / /
/ / / /
/ / / /
/ / / /
Sy1 Suo Siz Sua 31 1 2 S41 S42 S43 Saa

wird deutlich, dass sich die einzelnen Elementen von S’ dann tatsdchlich jeweils aus einer
Linearkombination der Elemente der entsprechenden Spalte von S berechnen:

3’23:[1 2 3 1]. =les;sD2es553D30533D1 @543

Dabei symbolisiert e die in Kapitel 11 erlauterte bindre Polynommultiplikation und &
repréasentiert die bit-weise xor-Operation.



8 Last Orders Please

8 Last Orders Please

Zum Abschluss einer jeden reguldren Runde wird nach Tabelle 1, wie schon in der ersten
Runde, wieder der aktuelle Rundenschliissel zur Zustandsmatrix addiert.

Die letzte Runde sieht fast wie eine regulidre Runde aus; lediglich der Aufruf von mix_columns
fehlt. Auch diese Modifikation der letzten Runde geschieht zielgerichtet in der Absicht,
die Kryptanalyse des Algorithmus zu erschweren.

9 Schlusselbund

In jeder der elf Runden wird ein aktueller Rundenschliissel verwendet. Daher miissen,
iblicherweise in einer Initialisierungsphase, aus dem vom Nutzer vorgegebenen Schliissel
insgesamt elf Rundenschliissel erzeugt werden. Unter der Annahme, dass der Schliis-
sel selbst aus 128 Bits besteht, lassen sich diese 16 Bytes wieder als eine 4 x 4-Matrix
anordnen. In der Rundenschliisselerzeugungsroutine werden dann die bekannten Trans-
formationen (Ersetzen mittels einer S-Box, Schieben einzelner Zeilen und Addition von
Konstanten) angewandt, um insgesamt elf 4 x 4-Matrizen zu erzeugen, die spéter in den
Runden als Rundenschliissel zur jeweiligen Zustandmatrix addiert werden kénnen.

10 Alles retour

Was wére eine Verschliisselung ohne die zugehorige Entschliisselung, um wieder zum
urspriinglichen Klartext zuriick zu gelangen? Zur Entschliisselung des Chiffretexts muss
seigentlich nur“ jede einzelne Transformation, die wéhrend der Verschliisselung durchge-
fithrt wurde, riickgdngig gemacht werden. Der letzte Schritt der Verschliisselung war nach
Abbildung 1 das Addieren des letzten Rundenschliissels. Als erster Schritt der Entschliis-
selung muss also der letzte Rundenschliissel wieder subtrahiert werden. Im Rahmen der
Galois-Felder wird aber sowohl die Addition als auch die Subtraktion zweier Elemente
durch eine xor-Verkiipfung realisiert, so dass die Entschliisselung wiederum mit einem
Aufruf der Form state = add_round_key (state, round_key) beginnt.

Der vorletzte Schritt der Verschliisselung war ein Schieben der Zustandsmatrixzeilen
nach links. Bei der Enschliisselung muss daher entsprechend nach rechts geschoben wer-
den.

Die Umkehrung der S-Box-Ersetzung geschieht am einfachsten durch die Definition und
Anwendung einer inversen S-Box, in der die Werte der S-Box-Elemente als Indizes und
vice versa aufgefasst werden.

Auch die in mix_columns durchgefiihrte Matrizenmultiplikation 148t sich durch die Mul-



11 Galois-Felder

tiplikation mit der inversen Matrix riickgéngig machen. Dabei muss die Inverse natiirlich
in GF(2%) gebildet werden:

2 311 14 11 13 9
p_ 1 2 31 o pl- 9 14 11 13
112 3 139 14 11
31 1 2 11 13 9 14

Wenn dann, nachdem alle elf Runden in umgekehrter Reihenfolge durchlaufen wurden,
die letzte xor-Verkniipfung mit dem ersten Rundenschliissel stattgefunden hat, sollte
sich der Kreis geschlossen haben und in der Zustandsmatrix wieder der urspriingliche
Klartext zu finden sein. Wenn nicht . ..

11 Galois-Felder

Alle Bytes, mit denen im AES gerechnet wird, sind Elemente eines endlichen Korpers,
genauer eines Galois-Feldes und noch genauer des GF(2%). Das GF(2%) wird also auf-
gebaut von den Zahlen 0 bis 255. Dass der Korper endlich ist, bedeutet, dass auch bei
einer Addition oder Multiplikation zweier Elemente von GF(2%) wieder nur ein Element
von GF(2%) entstehen darf. Um dies zu gewihrleisten, wird jedes Byte als ein Polynom
ausgedriickt, dessen Koeffizienten durch die einzelnen Bits definiert sind.

Die Zahl 163 beispielsweise kann daher in dezimaler, hexadezimaler, binérer und ,,poly-
nomialer” Schreibweise beschrieben werden:

1634 = A3,
= 10100011,
=1-2"40-2541-2°40-2"+0-2°4+0-22+1-2' +1-2°
="+ +a+1

Werden nun zwei Polynome addiert, so addieren sich iiblicherweise die Koeffizienten
gleicher Potenzen. Die Summe von 87 und 163 wiirde daher in Polynomschreibweise

87 163

A\ A\

Pttt +r41 + T4 tr+l=a P+t a2 042

zwei Koeffizienten mit dem Wert 2 enthalten, die sich natiirlich nicht als ein Bit auffassen
lassen. Diese (geraden) Koeffizienten werden daher bei der Arithmetik in GF(2®) schlicht
weggelassen, so dass sich als Ergebnis

87 @163 =" + 2% + 2° + 2% + 22 = 11110100, = 244,



11 Galois-Felder

ergibt.

Auf Bitebene entspricht diese Art der Addition, wie in Abbildung 4 dargestellt, einer
xor-Verkniipfung der beiden Summanden.

(87,=57,) (163, = A3,)
— ——

1jol1/o1/3/7 + [1]o[1]0/0[0[1]1

> (AOTHOT AT

\1\0\ 1/0/0/0] 1\ 1
L bitxor

11110100
-_—
(2444 = F4y)

Abbildung 4: Addition durch xor-Verkniipfung

Auch bei der Multiplikation zweier Galois-Feld-Elemente werden die Faktoren als Polyno-
me aufgefasst und im Ergebnis nur Koeffizienten von 0 bzw. 1 zugelassen. Die praktische
Realisierung (Abbildung 5) benétigt daher nur Schiebe- und xor-Operationen.

(874 =57,) (1634 =A3,)
— -—
'10/10/111/1 * [10/1000/11
/ bitshift
1/0/1/0/0/0/1/1]

[ T T T T T 1T
\}\9\ }\9\9\9\ y 1]
1/0/1/0/0/0/1/1]

[
~>010/00/0/0/0 0

_>\‘1\(‘)\‘1\(‘)\(‘)\(‘)\‘1\1\ bitxor
—>10/0/010/0/0.0/0

“—>{1/0[1/0[0[0[1[1]

YVYVYVY
[1/0lo[olo[1[1]0[0[1]1[0[0[1]

(8601, = 2199,)

Abbildung 5: Multiplikation durch Schiebe- und xor-Operationen

Leider ergibt sich durch die Multiplikation eine Zahl (10000110011001, = 2199, =
8601,), die mehr als 8 Bits beinhaltet (also grofer als 255 ist) und daher wieder kein

10
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Element von GF(28) darstellt. Um nun zu erreichen, dass sich das Ergebnis einer jeden
Multiplikation zweier Bytes wieder in einem Byte unterbringen l&8t, wird das Ergeb-
nis(polynom) durch ein so genanntes irreduzibles Polynom (283, = 11B;, = 100011011, =
2% + 2t + 23 + x + 1) geteilt und der dabei entstehende Divisionsrest als Endergebnis
aufgefasst.

(86014 = 2199;) (283, = 11B,)
i AP— N —

- ——

FIOMOIOIOIIGIONIMIOI0N : [10/o[0[LI0[1 1)
[1[0lo[0[1[1[0[1[1]

bitxor

YYVYVYY . .
olololol 1/011]2[1] 1/1l0[0]1] bitshift
[1[0[0[0]1[1]0[ 1] 1}

bitxor

\ 4

[0lol1[1]ol0[1]1[1]1]

-_——
(2074 = CF})

Abbildung 6: Modulo-Division

Diese Modulo-Division ist in Abbildung 6 dargestellt und kann auf Bitebene durchgefiihrt
werden, indem der Nenner (100011011;) jeweils mit seiner fithrenden 1 unter die fithrende
1 des aktuellen Divisionsrests geschoben wird und eine xor-Verkniipfung durchgefiihrt
wird; solange, bis der Divisionsrest in ein Byte passt und das Ergebnis daher wieder ein
Element von GF(2%) darstellt.
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