
Der Schlüssel zu Matlab

Jörg J. Buchholz

10. April 2002

Seit es Begehrlichkeiten zwischen Lebewesen gibt, verschließen oder verstecken wir unsere
Besitztümer, um sie vor dem Zugriff Anderer zu schützen; angefangen vom Hund, der
seinen Knochen im Garten vergräbt oder dem Nashornvogel, der seine komplette Familie
in einem Baum einmauert, bis hin zu atombombengeschützten Hochsicherheitstresoren,
in denen unser Gold lagert oder Terroristenchefs, die in weltweit ausgestrahlten Videos
verschlüsselte Botschaften verstecken.

1
”
Ich bin ein verschlüsselter Prinz . . .“

Gerade das letzte Beispiel zeigt, dass es in unserer Zeit immer wichtiger zu werden
scheint, auch immaterielle Güter (Daten, Informationen, Nachrichten, . . . ) zu schützen,
beziehungsweise auf der anderen Seite zu versuchen, diesen Schutz zu durchbrechen. Die
Wissenschaft, die sich mit dem Verschlüsseln einer Nachricht beschäftigt, heißt Krypto-
graphie; die Gegenseite (und dies können durchaus

”
die Guten“ sein) benutzt Methoden

der Kryptanalyse, um die Verschlüsselung zu brechen und so an die begehrte Nachricht
zu gelangen.

EntschlüsselungVerschlüsselung

Schlüssel

Klartext Chiffretext
Urspünglicher

Klartext
“Hallo Welt” “Hallo Welt”3Y[B$"=!D(#Y

Abbildung 1: Symmetrische Ver- und Entschlüsselung mit dem gleichen Schlüssel

In Abbildung 1 ist dargestellt, wie mittels eines geheimen Schlüssels eine lesbare Nach-

1



2 Analytisch Effektiv Sicher

richt (Klartext) zu unlesbarem Chiffretext verschlüsselt wird und wie dieser verschlüssel-
te Text später mit dem gleichen Schlüssel wieder in den lesbaren Originaltext entschlüs-
selt wird. Die Sicherheit solch eines symmetrischen Algorithmus liegt dabei verständli-
cherweise in der Geheimhaltung des Schlüssels. Jeder, der den Schlüssel besitzt, kann
die verschlüsselte Nachricht entschlüsseln. Sollen Ver- und Entschlüsselung beispielswei-
se von unterschiedlichen Personen an unterschiedlichen Orten durchgeführt werden, so
muss ein sicherer Kanal (Bote, persönliches Gespräch, . . . ) gefunden werden, über den
der geheime Schlüssel ausgetauscht werden kann.

Da aber gerade der Transport eines Schlüssels ein nicht zu unterschätzendes Sicher-
heitsrisiko darstellt, sind in den letzten zehn Jahren asymmetrische Algorithmen mit
öffentlichem Schlüssel (public key) zur Blüte gelangt, bei denen die Verschlüsselung
mit einem öffentlichen, für jedermann zugänglichen Schlüssel erfolgt, während zur Ent-
schlüsselung ein privater geheimer Schlüssel verwendet wird, der sich natürlich nicht,
oder nur mit unvertretbar hohem Aufwand, aus dem öffentlichen Schlüssel berechnen
lässt. Solche Public-Key-Algorithmen klinken sich mittlerweile recht nahtlos und trans-
parent beispielsweise in gängige E-Mail-Programme ein; das Ver- bzw. Entschlüsseln
einer E-Mail geschieht mit Plug-ins wie PGP (Pretty Good Privacy) kraft eines einzigen
Mausklicks [1].

Wenn nun also die Sicherheit einer Chiffrierung ausschließlich von der Geheimhaltung
des Schlüssels abhängt, macht es auf der anderen Seite natürlich Sinn, den Algorithmus
selbst möglichst breit zu veröffentlichen, um möglichst vielen Experten die Möglichkeit
zu geben, möglichst viele Fehler und Schwachstellen möglichst schnell zu finden und aus-
zumerzen. Aus diesem Grund veröffentlichte das amerikanische NBS (National Bureau
of Standards) schon im Jahre 1975 die Einzelheiten des DES (Data Encryption Stan-
dard), der, nach ein paar turbulenten Workshops, zwei Jahre später als Bundesstandard
anerkannt wurde und seitdem einen unglaublichen weltweiten Siegeszug in unzähligen
kryptographischen Anwendungen gefeiert hat.

Erst mit den in der letzten Dekade entwickelten Verfahren der differenziellen und linea-
ren Kryptanalyse, die sich außerdem noch der sich nach dem Moore’schen Gesetz alle
18 Monate verdoppelnden Rechenleistung bedienen durften, konnte der DES endgültig
von seinem Thron gestürzt werden. Einem Algorithmus, der heute mit handelsüblicher
Hardware in ein paar Stunden geknackt werden kann, vertraut man eben vielleicht doch
nicht unbedingt gerne sein Bankguthaben oder das Leben seiner Soldaten an.

2 Analytisch Effektiv Sicher

Einen weiteren unangenehmen Beigeschmack erzeugte von Anbeginn an die Tatsache,
dass im DES Transformationstabellen (die so genannten S-Boxes) verwendet werden, die
in einer geheimen Zusammenarbeit von IBM und der NSA (National Security Agency)

2



3 Jetzt geht’s rund

entwickelt wurden und die zwar willkürlich und zufällig aussehen, die aber nach Aussage
vieler Kryptanalytiker sehr sorgfältig konstruiert wurden; möglicherweise mit dem nicht
ganz uneigennützigen Ziel, den DES durch eine

”
Hintertür“ leichter knacken zu können.

Dies war die Geburtsstunde des designierten DES-Nachfolgers: Am 26. November 2001
veröffentlichte das NIST (National Institute of Standards and Technology) die Spezifi-
kation des AES (Advanced Encryption Standard) [2]; verbunden mit der berechtigten
Hoffnung, dass der AES am großen Erfolg seines Vorgängers anknüpfen und in den kom-
menden zwanzig Jahren seinen Weg in die meisten Telefone, Chipkarten, Festplatten,
Neokorteximplantate, . . . finden wird.

Der AES ist, genau wie sein Wegbereiter, ein Blockalgorithmus; der zu verschlüsselnde
Klartext wird also in Blöcke von jeweils 128 Bits unterteilt, was bei acht Bits pro Byte
bedeutet, dass immer 16 Zeichen (Bytes) gleichzeitig verarbeitet werden. Dazu werden
die Zeichen, wie in Abbildung 2 dargestellt, in einem ersten Schritt spaltenweise in die
so genannte Zustandsmatrix einsortiert.

ei i

i

s

s

s

s

t

t

e

e

e

e

i

i

n

n

h

h

r

r

l

l

a n… …s

s

Abbildung 2: 16 Bytes bilden eine Zustandsmatrix

3 Jetzt geht’s rund

Die Zustandsmatrix wird dann bei der Verschlüsselung in insgesamt elf Runden un-
ter Benutzung des Schlüssels und der wiederholten Anwendung verschiedener Transfor-
mationen so gründlich verunstaltet, dass das analytische Rückrechnen zur Originalzu-
standsmatrix, ohne Kenntnis des Schlüssels, von allen Kryptanalytikern (momentan) als
unmöglich bezeichnet wird:

3



4 1 + 1 = 0

% Erste Runde

state = add_round_key (state, round_key)

% Runde 2 bis Runde 10

for i_round = 2 : 10

state = sub_bytes (state, s_box)

state = shift_rows (state)

state = mix_columns (state, poly_mat)

state = add_round_key (state, round_key)

end

% Letzte Runde

state = sub_bytes (state, s_box)

state = shift_rows (state)

state = add_round_key (state, round_key)

Tabelle 1: Die Verschlüsselung geschieht in elf Runden

Auch was einen Brute-Force-Angriff anbelangt, also mal schnell alle möglichen Schlüssel
auszuprobieren, haben Joan Daemen und Vincent Rijmen [3] aus dem Ärger mit der
kurzen Schlüssellänge (56 Bit) des DES gelernt. Das NIST meint zu diesem Thema:

”
Assuming that one could build a machine that could recover a DES key

in a second (i.e., try 255 keys per second), then it would take that machine
approximately 149 thousand-billion (149 trillion) years to crack a 128-bit
AES key. To put that into perspective, the universe is believed to be less
than 20 billion years old.“

Um auch für die nächsten Technologieschübe gewappnet zu sein, wurden sogar noch Va-
rianten des AES mit 192 und 256 Bits definiert. Ob diese dann allerdings auch Quanten-
rechnern widerstehen, die alle Schlüssel gleichzeitig testen oder riesigen

”
Think-tanks“, in

denen Myriaden von genmanipulierten Cracker-Bakterien ihren Lebenssinn darin sehen,
die in ihren Erbanlagen individuell abgelegten Schlüssel an Kryptofutter zu versuchen,
mag die Zukunft zeigen.

4 1 + 1 = 0

Die erste Verschlüsselungsrunde besteht, wie in Tabelle 1 dargestellt, nur aus einer
”
Ad-

dition“ (add_round_key) der aktuellen Zustandsmatrix (state) und des aus dem Schlüs-
sel abgeleiteten ersten Rundenschlüssel (round_key), bei dem es sich ebenfalls um eine
4× 4-Matrix handelt. Da die im AES verarbeiteten Bytes aber, wie in Kapitel 11 erläu-
tert, als Elemente eines Galois-Feldes aufgefasst werden, muss anstelle einer

”
normalen“

4



5 Alte Schachteln

Addition eine bit-weise Exklusiv-Oder-Verknüpfung der Elemente von Zustandsmatrix
und Rundenschlüssel verwendet werden.

Und während nun herkömmliche Programmiersprachen für das elementweise xor-Verknüpfen
der Matrizen natürlich gleich zwei in einander geschachtelte Schleifenkonstrukte erfor-
dern, schlägt an dieser Stelle Matlab’s Marvelous Matrix Manipulation Mastery mal
wieder gnadenlos zu: der Matlab-Befehl bitxor lässt sich freundlicherweise nicht nur
auf Skalare sondern auch direkt auf Vektoren und Matrizen anwenden, so dass sich die
erste Verschlüsselungsrunde unter Matlab in einer einzigen Zeile erledigen lässt, indem
statt des Befehls add_round_key direkt bitxor eingesetzt wird.1

5 Alte Schachteln

Die Runden zwei bis elf verwenden als erste Verschleierungstaktik das Ersetzen (sub_bytes)
eines jeden Bytes der Zustandsmatrix mit Hilfe einer Ersetzungstabelle (s_box), die a
priori definiert ist und die nicht wie im Falle des DES in dubioser Weise willkürlich zu-
rechtgebastelt wurde, sondern deterministisch reproduziert werden kann. Die dazu not-
wendigen Algorithmen würden allerdings ein wenig den Rahmen dieses Artikels sprengen,
sind aber in [2] definiert und in [4] ausführlich erläutert.

Die S-Box besteht aus den algorithmisch angeordneten 256 Elementen des Galois-Feldes
GF(28), also den Zahlen von 0 bis 255, die üblicherweise in Form einer 16 × 16-Matrix
hexadezimal dargestellt werden:

1Die vollständige Implementation des AES-Algorithmus in Matlab (m-Dateien und ausführliche Do-
kumentation) finden Sie auf der AES-Seite des Autors [4] oder auf Matlab Central.

5



6 Links, zwo, drei, vier

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Tabelle 2: Ersetzungstabelle (S-Box)

Wenn nun beispielsweise ein Element der Zustandsmatrix den Wert 7 besitzt, so wird
diese 7 als Index in die S-Box aufgefasst, so dass dort der Wert c5hex = 197dez gefunden
(ja - das erste Element hat den Index 0) und somit die 7 in der Zustandsmatrix durch
den Wert 197 ersetzt wird.

Auch hier erlaubt es Matlab eleganterweise, das gleichzeitige Ersetzen aller Elemente
der Zustandsmatrix in einer einzigen Quelltextzeile auszudrücken, indem die komplette
Zustandsmatrix als Indexmatrix der S-Box verwendet wird.

6 Links, zwo, drei, vier

Die nächste in jeder Runde durchzuführende Transformation (shift_rows) schiebt, wie
Abbildung 3 verdeutlicht, die zweite Zeile der Zustandsmatrix um einen Platz nach
links. Das dabei links herausfallende Element (s21) wird auf den frei werdenden Platz
ganz rechts in der zweiten Zeile wieder hinein geschoben.

6



7 Alles dreht sich, alles bewegt sich

s11 s11

s31 s31

s41 s41s42 s42s43 s43s44 s44

s32 s32s33 s33s34 s34

s12 s12s13 s13s14 s14

s23 s23s24 s24s21 s21s22 s22

Abbildung 3: Zyklisches Verschieben der Zeilen der Zustandsmatrix

Auf die gleiche Weise werden die dritte und die vierte Zeile um zwei beziehungsweise
drei Plätze nach links geschoben.

7 Alles dreht sich, alles bewegt sich

Die letzte in jeder Runde durchzuführende Transformation der Zustandsmatrix hat den
aussagekräftigen Namen mix_columns bekommen und macht entsprechend auch ge-
nau dies. Aus der Multiplikation der Zustandsmatrix S mit einer vollbesetzten

”
Misch-

Matrix“ P von links resultiert eine neue Zustandsmatrix S′

S′ = P • S

In der elementweisen Darstellung der Transformation
s′11 s′12 s′13 s′14

s′21 s′22 s′23 s′24

s′31 s′32 s′33 s′34

s′41 s′42 s′43 s′44

 =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 •


s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44


wird deutlich, dass sich die einzelnen Elementen von S′ dann tatsächlich jeweils aus einer
Linearkombination der Elemente der entsprechenden Spalte von S berechnen:

s′23 =
[
1 2 3 1

]
•


s13

s23

s33

s43

 = 1 • s13 ⊕ 2 • s23 ⊕ 3 • s33 ⊕ 1 • s43

Dabei symbolisiert • die in Kapitel 11 erläuterte binäre Polynommultiplikation und ⊕
repräsentiert die bit-weise xor-Operation.

7



8 Last Orders Please

8 Last Orders Please

Zum Abschluss einer jeden regulären Runde wird nach Tabelle 1, wie schon in der ersten
Runde, wieder der aktuelle Rundenschlüssel zur Zustandsmatrix addiert.

Die letzte Runde sieht fast wie eine reguläre Runde aus; lediglich der Aufruf von mix_columns

fehlt. Auch diese Modifikation der letzten Runde geschieht zielgerichtet in der Absicht,
die Kryptanalyse des Algorithmus zu erschweren.

9 Schlüsselbund

In jeder der elf Runden wird ein aktueller Rundenschlüssel verwendet. Daher müssen,
üblicherweise in einer Initialisierungsphase, aus dem vom Nutzer vorgegebenen Schlüssel
insgesamt elf Rundenschlüssel erzeugt werden. Unter der Annahme, dass der Schlüs-
sel selbst aus 128 Bits besteht, lassen sich diese 16 Bytes wieder als eine 4 × 4-Matrix
anordnen. In der Rundenschlüsselerzeugungsroutine werden dann die bekannten Trans-
formationen (Ersetzen mittels einer S-Box, Schieben einzelner Zeilen und Addition von
Konstanten) angewandt, um insgesamt elf 4× 4-Matrizen zu erzeugen, die später in den
Runden als Rundenschlüssel zur jeweiligen Zustandmatrix addiert werden können.

10 Alles retour

Was wäre eine Verschlüsselung ohne die zugehörige Entschlüsselung, um wieder zum
ursprünglichen Klartext zurück zu gelangen? Zur Entschlüsselung des Chiffretexts muss

”
eigentlich nur“ jede einzelne Transformation, die während der Verschlüsselung durchge-

führt wurde, rückgängig gemacht werden. Der letzte Schritt der Verschlüsselung war nach
Abbildung 1 das Addieren des letzten Rundenschlüssels. Als erster Schritt der Entschlüs-
selung muss also der letzte Rundenschlüssel wieder subtrahiert werden. Im Rahmen der
Galois-Felder wird aber sowohl die Addition als auch die Subtraktion zweier Elemente
durch eine xor-Verküpfung realisiert, so dass die Entschlüsselung wiederum mit einem
Aufruf der Form state = add_round_key (state, round_key) beginnt.

Der vorletzte Schritt der Verschlüsselung war ein Schieben der Zustandsmatrixzeilen
nach links. Bei der Enschlüsselung muss daher entsprechend nach rechts geschoben wer-
den.

Die Umkehrung der S-Box-Ersetzung geschieht am einfachsten durch die Definition und
Anwendung einer inversen S-Box, in der die Werte der S-Box-Elemente als Indizes und
vice versa aufgefasst werden.

Auch die in mix_columns durchgeführte Matrizenmultiplikation läßt sich durch die Mul-

8



11 Galois-Felder

tiplikation mit der inversen Matrix rückgängig machen. Dabei muss die Inverse natürlich
in GF(28) gebildet werden:

P =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 ⇒ P−1 =


14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14


Wenn dann, nachdem alle elf Runden in umgekehrter Reihenfolge durchlaufen wurden,
die letzte xor-Verknüpfung mit dem ersten Rundenschlüssel stattgefunden hat, sollte
sich der Kreis geschlossen haben und in der Zustandsmatrix wieder der ursprüngliche
Klartext zu finden sein. Wenn nicht . . .

11 Galois-Felder

Alle Bytes, mit denen im AES gerechnet wird, sind Elemente eines endlichen Körpers,
genauer eines Galois-Feldes und noch genauer des GF(28). Das GF(28) wird also auf-
gebaut von den Zahlen 0 bis 255. Dass der Körper endlich ist, bedeutet, dass auch bei
einer Addition oder Multiplikation zweier Elemente von GF(28) wieder nur ein Element
von GF(28) entstehen darf. Um dies zu gewährleisten, wird jedes Byte als ein Polynom
ausgedrückt, dessen Koeffizienten durch die einzelnen Bits definiert sind.

Die Zahl 163 beispielsweise kann daher in dezimaler, hexadezimaler, binärer und
”
poly-

nomialer“ Schreibweise beschrieben werden:

163d = A3h

= 10100011b

= 1 · x7 + 0 · x6 + 1 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 1 · x1 + 1 · x0

= x7 + x5 + x + 1

Werden nun zwei Polynome addiert, so addieren sich üblicherweise die Koeffizienten
gleicher Potenzen. Die Summe von 87 und 163 würde daher in Polynomschreibweise

87︷ ︸︸ ︷
x6 + x4 + x2 + x + 1 +

163︷ ︸︸ ︷
x7 + x5 + x + 1 = x7 + x6 + x5 + x4 + x2 + 2 · x + 2

zwei Koeffizienten mit dem Wert 2 enthalten, die sich natürlich nicht als ein Bit auffassen
lassen. Diese (geraden) Koeffizienten werden daher bei der Arithmetik in GF(28) schlicht
weggelassen, so dass sich als Ergebnis

87⊕ 163 = x7 + x6 + x5 + x4 + x2 = 11110100b = 244d

9



11 Galois-Felder

ergibt.

Auf Bitebene entspricht diese Art der Addition, wie in Abbildung 4 dargestellt, einer
xor-Verknüpfung der beiden Summanden.

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1 1

11

1 11 1 1

0

0

0 0 0

0

0

0

0

0

0

1 1

(87 = 57 )d h

(244 = F4 )d h

(163 = A3 )d h{
{

{
bitxor

+

11

Abbildung 4: Addition durch xor-Verknüpfung

Auch bei der Multiplikation zweier Galois-Feld-Elemente werden die Faktoren als Polyno-
me aufgefasst und im Ergebnis nur Koeffizienten von 0 bzw. 1 zugelassen. Die praktische
Realisierung (Abbildung 5) benötigt daher nur Schiebe- und xor-Operationen.

1 0 1 0 11 1 1 1

1
1

1

1

1

1
1

1

1

1

1 1 1 1 1 1

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 00000 0

0

0
0

0

0

0

0

0
0

0

0

0

0

0
0

0

0

1

1

1

1

1

(87 = 57 )d h

(8601 = 2199 )d h

(163 = A3 )d h{

{

{

bitshift

bitxor

•

10

1

1

1

1
1

1

Abbildung 5: Multiplikation durch Schiebe- und xor-Operationen

Leider ergibt sich durch die Multiplikation eine Zahl (10000110011001b = 2199h =
8601d), die mehr als 8 Bits beinhaltet (also größer als 255 ist) und daher wieder kein

10



Literatur

Element von GF(28) darstellt. Um nun zu erreichen, dass sich das Ergebnis einer jeden
Multiplikation zweier Bytes wieder in einem Byte unterbringen läßt, wird das Ergeb-
nis(polynom) durch ein so genanntes irreduzibles Polynom (283d = 11Bh = 100011011b =
x8 + x4 + x3 + x + 1) geteilt und der dabei entstehende Divisionsrest als Endergebnis
aufgefasst.

1

1

1
1 1 1 1 1 1 0

0

0

0 0 0 0 0

00

0 0

0 0 00000 0 0

0

0
0

0

0

0 0

0

0

0
1

1

1

1 1

1

1

1

1 1 1

1

1

1 1 1

1

1

1
1

1

1
1

1

1

(8601 = 2199 )d h

(207 = CF )d h

(283 = 11B )d h{
{

{
bitshift

bitxor

bitxor

:

Abbildung 6: Modulo-Division

Diese Modulo-Division ist in Abbildung 6 dargestellt und kann auf Bitebene durchgeführt
werden, indem der Nenner (100011011b) jeweils mit seiner führenden 1 unter die führende
1 des aktuellen Divisionsrests geschoben wird und eine xor-Verknüpfung durchgeführt
wird; solange, bis der Divisionsrest in ein Byte passt und das Ergebnis daher wieder ein
Element von GF(28) darstellt.

Literatur

[1] Zimmermann, P.: PGP Freeware. http://www.pgp.com/products/freeware,
(2002).

[2] National Institute of Standards and Technology: Specification for the Advanced
Encryption Standard (AES). Federal Information Processing Standards Publica-
tion 197, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf,
(2002).

[3] Rijmen, V.: The block cipher Rijndael. http://www.esat.kuleuven.ac.be/

~rijmen/rijndael, (2002).

[4] Buchholz, J. J.: Matlab Implementation of the Advanced Encryption Standard.
http://buchholz.hs-bremen.de/aes/aes.htm, (2002).

11

http://www.pgp.com/products/freeware
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.esat.kuleuven.ac.be/~rijmen/rijndael
http://www.esat.kuleuven.ac.be/~rijmen/rijndael
http://buchholz.hs-bremen.de/aes/aes.htm

	,,Ich bin ein verschlüsselter Prinz …``
	 Analytisch Effektiv Sicher 
	Jetzt geht's rund
	1 + 1 = 0
	Alte Schachteln
	Links, zwo, drei, vier
	Alles dreht sich, alles bewegt sich
	Last Orders Please
	Schlüsselbund
	Alles retour
	Galois-Felder

