Matlab Goes doom

Jorg J. Buchholz

13. September 2006

Einleitung

Sagt Thnen die Tastenkombination W-A-S-D etwas? Haben Sie Threm halbwiichsigen
Sohn schon mal iiber die Schulter gesehen, wenn er seinen neuesten Ego-Shooter spielt
und darauf geachtet, wo die Finger seiner linken Hand liegen? Kénnen Sie sich vorstellen,
dass er sich intuitiv weitaus schneller und sicherer durch dreidimensionale Datendarstel-
lungen in MATLAB bewegen kann als Sie mit Thren guten alten zoom-, pan- und rotate-
Schaltflichen; und das auch noch, ohne zu wissen, dass der Begriff , Matrix“ nicht nur
im Kino, sondern auch in der Mathematik eine Bedeutung besitzt?

Die kommende Generation von Ingenieuren wird bei der Bewegung durch dreidimensio-
nale Welten die Steuerung verwenden (wollen), mit der sie aufgewachsen ist: Die Maus
schwenkt die Blickrichtung nach oben, unten, rechts und links und die Tasten bewegen
den Betrachter auf die in Abbildung 1 definierte Weise in den drei rdumlichen Freiheits-
graden. Auf MATLAB CENTRAL [!] finden Sie eine erste MATLAB-Implementation dieses
Navigationsschemas (Ende 2005 sofort Platz 1 der ,Most Downloaded This Week* [2]

OPTIONS

Multiplayer | Keyboard | Mouse Audio Yaoice

KEY BUTTOMN

Lige Defaults Advanced...

Abbildung 1: Tastenbelegung in Counter Strike Source

und ,,Pick of the Week“ Anfang 2006 [3]). Dieser Artikel soll nun ein wenig Licht auf die
nahtlose Eleganz werfen, mit der sich doom in MATLAB einfiigt.

Wo bin ich?

Um die Funktionsweise von doom genauer verstehen zu kénnen, ist es sinnvoll und not-
wendig, zunéchst ein paar Koordinatensysteme, Transformationswinkel und Kamera-
vektoren zu definieren. Links unten in Abbildung 2 befindet sich der Ursprung des in
rot dargestellten Basiskoordinatensystems, das als geoddtisches Koordinatensystem be-
zeichnet wird und daher den Index g tréagt. MATLAB driickt alle Vektoren in diesem
Koordinatensystem aus. Beispielsweise liefert der Befehl

C_P = get (gca, ’CameraPosition’)
die geodétischen Koordinaten der aktuellen Position der Kamera, mit der MATLAB Ob-
jekte ,aufnimmt*. Die Kamera befindet sich also in Abbildung 2 an der Spitze des

Camera-Position-Vektors Cp und ,blickt“ in Richtung des Camera-View-Vektors Cy/,
an dessen Spitze sich das darzustellende Objekt befindet. Der Befehl

C_T = get (gca, ’CameraTarget’)

gibt den Camera-Target-Vektor Cr zuriick, der die geodétischen Koordinaten der Po-
sition des betrachteten Objekts beinhaltet. Der Blickrichtungsvektor Cy der Kamera
lasst sich daher durch eine einfache Vektordifferenz aus den anderen beiden Vektoren
berechnen:

Cy=Cr—-0Cp

Der Camera-View-Vektor Cy wiederum definiert die x,-Achse des in Abbildung 2 blau
dargestellten view-festen Koordinatensystems, dessen Achsen den Index v tragen und
das die Lage (Ausrichtung) der Kamera im Raum festlegt.

Abbildung 2: Zusammenhang zwischen dem Camera-Target-, dem Camera-Position-
und dem Camera-View-Vektor (Cr = Cp + Cy) und Transformation des
geoditischen Koordinatensystems (Index g) in das view-feste Koordina-
tensystem (Index v) iiber die Drehwinkel x (Azimut) und v (Elevation)

Dabei wird die y,-Achse des view-festen Koordinatensystems ganz bewusst in die Hori-
zontalebene (also in die durch z, und y, aufgespannte Ebene) gelegt, so dass ein Rollen
der Kamera um ihre Blickrichtung (z,) nicht moglich ist. Dass dies eine sinnvolle Ein-
schrankung ist, wird Thnen sofort klar, wenn Sie “um Ihre eigene Blickrichtung rollen®,

wenn Sie also [hren Kopf langsam zur Seite neigen, so dass sich ein Ohr Ihrer Schulter
ndhert. Und - kippt wéhrend dieser Bewegung das Bild, das Sie wahrnehmen? Natiirlich
nicht; solange der Winkel nicht zu schnell zu grof§ wird (und Sie niichtern sind), ,,rechnet
Ihr bordeigenes steadycam-Bildverarbeitungssystem Rollwinkel in Echtzeit automatisch

43

weg".

Augen links! Kopf hoch!

In , wissenschaftlichen“ 3D-Steuerungen (MATLAB: Orbit Camera, rotate3d) bewegt
sich die Kamera héufig mit konstantem Abstand um das betrachtete Objekt herum und
richtet den Blick dabei immer auf das Objekt. In Abbildung 2 bleibt also Cr (und
damit auch die Spitze von Cy) fest, wihrend sich der Anfangspunkt von Cy auf einer
Kugeloberfliche bewegt. Fiir den Nutzer sicht das dann so aus, als ob er mit der Maus
das Objekt mitsamt seinem Achsensystem dreht.

In Ego-Shootern sind translatorische und rotatorische Kamerabewegungen voneinander
entkoppelt; die Translation wird {iber die Tastatur gesteuert, die Rotation geschieht mit
Hilfe der Maus.

In Abbildung 2 bedeutet dies, dass eine Mausbewegung den Camera-View-Vektor Cy um
seinen festen Anfangspunkt dreht. Dabei bewirkt eine links-rechts-Bewegung der Maus
eine Gierbewegung von Cy in der Horizontalebene (,,Kopf blickt zur Seite“), wihrend
eine vor-zuriick-Mausbewegung den Vektor Cy und damit den Kopf auf- bzw. abnicken
ldsst. Einer meiner Studenten driickte es einmal so aus: ,,Ich stelle mir vor, meine Hand
lage (statt auf der Maus) auf dem Kopf der Person, die ich im Spiel steuere.“

Wie in Abbildung 3 dargestellt, wird zur Interpretation einer Mausbewegung zuerst der
Camera-View-Vektor Cy als Differenz zwischen Camera-Target-Vektor Cr und Camera-
Position-Vektor Cp berechnet. Cy wird dann in seine Kugelkoordinaten (Azimut y, Ele-
vation v und Betrag) zerlegt. Der Weg, den die Maus seit ihrer letzten Abfrage zuriick-
gelegt hat, fithrt schlielich zu einer Verédnderung von Azimut und Elevation (Ax: links-
rechts, Av: vor-zuriick), so dass nach einer Riicktransformation in kartesische Koor-
dinaten der verdnderte Camera-View-Vektor und - in Summe mit dem unverdnderten
Camera-Position-Vektor - der neue Camera-Target-Vektor berechnet werden kann.

Ein weiterer Unterschied zwischen wissenschaftlicher Anwendung und Ego-Shooter be-
steht in der Fixierung des Mauszeigers. In einem Ego-Shooter bewegt eine Mausbewe-
gung nicht den Mauszeiger auf dem Bildschirm sondern nur den Blick auf das dargestellte
Objekt. Der Mauszeiger (resp. das Fadenkreuz einer Waffe) bleibt dabei ortsfest - bei-
spielsweise in der Mitte - des aktuellen Fensters. In doom ist dieses Verhalten realisiert,
indem in jedem Aufruf des Mausbewegungsunterprogrammes der Mauszeiger aktiv in
die Mitte des aktuellen Fensters ,zuriickgesetzt“ wird:

Abbildung 3: Eine Mausbewegung verdndert Azimut x und Elevation -, damit die La-
ge des Camera-View-Vektors Cy und damit auch den Camera-Target-
Vektor Cr.

figure_position = get (gcf, ’position’);

x_center = figure_position(1l) + figure_position(3)/2;
y_center = figure_position(2) + figure_position(4)/2;
set (0, ’PointerLocation’, [x_center, y_center]);

God Mode

Waihrend die Maus also die Kopfdrehung eines ortsfesten Beobachters steuert, bewegt
sich der Beobachter selbst in einem Ego-Shooter mit der Tastatur durch den Raum.
Wie in Abbildung 1 festgelegt, bewirken dabei iiblicherweise die Tasten w und s eine
vor- bzw. zuriick-Bewegung, wihrend a und d den ganzen Beobachter nach links bzw.
rechts verschieben. Die dritte Achse (unten/oben) wird héufig durch die Taste Strg
und die Leertaste angesteuert. Wéhrend Strg in vielen Spielen dazu fiihrt, dass sich die
Spielperson duckt, also in die Hocke geht, wird die Leertaste meistens zum Springen
(nach oben) verwendet.

Einige Spiele kennen einen so genannten ,,God Mode®, der sich manchmal durch ,,Cheats*
aktivieren ldsst oder nach dem virtuellen Ableben der Spielperson automatisch einge-
schaltet wird. Im ,,God Mode* kann sich die Spielperson in allen drei Achsen - also auch
durch Winde und Decken - frei bewegen.

Dabei stellt sich natiirlich die entscheidende Frage, nach einer eindeutigen Definition der
Begriffe vorne, hinten, rechts, links, oben und unten. Ist vorne beispielsweise immer in
Nordrichtung festgelegt oder zeigt meine Nase immer nach vorne, egal wohin ich mich

drehe? Wo ist oben, wenn ich im Gras liege und den Himmel betrachte? Und unter Wasser
oder im Weltraum; Kann ein Raumschiff nach links abbiegen? Einige Spiele verwenden
hier eine zuweilen recht kontra-intuitive Mischung aus geodétischen und view-festen
Achsen; doom definiert alle translatorischen Bewegungsrichtungen konsequent im view-
festen Achsensystem. Die Taste w bewegt die Spielperson tatséchlich in die Richtung, in
die das Riechorgan momentan weist; wenn sie auf dem Riicken liegt, also himmelwiérts.
Mit w bewegt man sich also néher an das betrachtete Objekt heran und kann (God
Mode sei dank) auch durch Objekte ,hindurch fliegen“. Ohne Blickrichtungsénderung
entfernt man sich daher dann - nach , hinterem“ Objekthiillenaustritt - mit weiterhin
gedriickter w-Taste natiirlich wieder vom Objekt weg. Die Taste d bewegt in Richtung des
rechten Ohrs und die Leertaste zieht die Spielperson immer in Richtung seiner eigenen
Schideldecke; auch wenn dies zu einer (geoditisch gesehen) waagerechten Bewegung
fithrt, weil die Augen gerade auf den ,,Erdmittelpunkt“ gerichtet sind.

In Abbildung 2 lassen sich die Bewegungen besonders anschaulich darstellen: Die Tasten
w und s bewegen den gesamten Camera-View-Vektor Cy entlang seiner Wirkungslinie
in positive bzw. negative x,-Richtung, a und d verschieben Cy parallel zu sich selbst
in Richtung der negativen bzw. positiven y,-Achse, wihrend Strg und Leertaste eine
Bewegung des Camera-View-Vektors in positive bzw. negative z,-Achsenrichtung bewir-
ken.

C C+

T T
I ;A
Cy
A - !
C Illl . C !
P Y “P
>J—>

Abbildung 4: Mit der Tastatur wird eine Verschiebung des Camera-View-Vektors Cy,
in Richtung der view-festen Achsen definiert (ACy;,). Diese wird mit Hil-
fe der Winkel y und ~ ins geodétische Koordinatensystem transformiert
(ACy,) und bewirkt dort eine gleichzeitige Verdnderung des Camera-
Target-Vektor Cr und des Camera-Position-Vektor Cp.

Abbildung 4 veranschaulicht die translatorische Bewegung nochmals in Form eines Block-
schaltbildes. Wie schon bei der Rotation werden die Lagewinkel x und ~, die die La-
ge des view-festen gegeniiber dem geodétischen Koordinatensystems beschreiben, als
Kugelkoordinaten des Camera-View-Vektors Cy berechnet, der sich wiederum aus der
Differenz zwischen Camera-Target-Vektor C; und Camera-Position-Vektor Cp ergibt.
Aus den beiden Lagewinkel wird dann die Transformationsmatrix My, gebildet, mit der
sich Vektoren vom view-festen ins geodétische Koordinatensystem transformieren lassen
(s. Kapitel Matrix Reloaded). Jede Taste (w a s d...) liefert nun eine Verschiebung des
Camera-View-Vektors entlang jeweils einer Achsenrichtung des view-festen Koordinaten-
systems (ACy,). Da Camera-Target- und Camera-Position-Vektor aber im geodétischen
Koordinatensystem definiert sind, muss der Verschiebungsvektor durch Multiplikation
mit der Transformationsmatrix ebenfalls im geodétische Koordinatensystem ausgedriickt
werden (ACy,), bevor er zu den Camera-Vektoren addiert wird und so ihre Verschiebung
bewirkt.

In vielen Spielen bewirkt die Shift-Taste () eine Erhohung oder Erniedrigung der Be-
wegungsgeschwindigkeit (vgl. Abbildung 1). Auch in doom beschleunigt das gleichzeitige
Driicken von Shift die Geschwindigkeit einer anderen Taste um das Zehnfache.

Sehr interessiert wére der Autor von doom {ibrigens an einer Moglichkeit, unter MATLAB
zwei gleichzeitig gedriickte Primértasten (beispielsweise w und a) abzufragen.

Matrix Reloaded

Mathematisch léasst sich die Lage des Blickrichtungsvektors iibersichtlich mittels zweier
Drehmatrizen beschreiben. Man stelle sich dazu vor, das view-feste Koordinatensystem
(Index v in Abbildung 2) wire anfianglich mit dem (verschobenen) geodétischen Koordi-
natensystem (Index ¢) identisch. Die erste Drehung findet dann mit dem Azimutwinkel x
in der z,-y,-Ebene um die z,-Achse statt. Dabei wird die z,-Achse in die Zwischenachse
k gedreht und die y,-Achse landet in ihrer endgiiltigen Lage. Bei der zweiten Drehung
wird mit dem Elevationswinkel v in der x,-z,-Ebene um die y,-Achse gedreht, um die
x,-Achse aus der Zwischenachse k und die z,-Achse aus der z,-Achsenrichtung in ihre
jeweilige Endlage zu befordern.

Die Gesamttransformationsmatrix M,, vom geodétischen ins view-feste Koordinaten-
system ergibt sich dann als Produkt der beiden Einzeldrehmatrizen:

cosy 0 —sinvy cosy siny 0 cos7ycosy cosvysiny —sinvy
M,, = 0 1 0 —siny cosy 0| = —sin x COSs X 0
siny 0 cosvy 0 0 1 sinycosy sinysiny cos7y

Die Riicktransformation vom view-festen ins geodétische Koordinatensystem lésst sich
sehr einfach berechnen, da die Inverse einer orthogonalen Drehmatrix freundlicherweise
gleich ihrer Transponierten ist:

T
COsycosy cosysiny —sinvy Ccos7ycosy —siny sin<ycosy

M,, = Mfg = | —siny CoS X 0 = |cosysiny cosy sinysiny
sinycosy sinysiny cos7y — sin~y 0 cos 7y

Mit Mg, lésst sich jetzt die Verschiebung der Kameravektoren auf Grund eines Tas-
tendrucks sehr iibersichtlich formulieren. Wenn der Nutzer beispielsweise die Taste w
driickt, um die Kamera nach vorne zu bewegen, definiert er dadurch einen Verschie-
bungsvektor, der im view-festen Koordinatensystem nur eine x-Komponente besitzt

T
ACy, = [Ax 0 ()] . Um die benétigte Verschiebung im geodétischen Koordinatensys-

tem zu erhalten (vgl. Abbildung 4) muss Cy, von links mit der Transformationsmatrix
M, multipliziert werden, wobei erfreulicherweise nur die erste Spalte von My, benotigt
wird:

cosycosy - - Az COS Y COS X
ACy, = My, - ACy, = |cosysiny - || 0| = |cosysiny |4z
—siny - - 0 —sin~y

Auch die anderen Tasten sprechen - bedingt durch die reine Bewegung in view-feste
Achsenrichtungen - nur jeweils eine Spalte von Mg, an.

Die in Abbildung 3 benétigte Transformation von Kugel- in kartesische Koordinaten
lasst sich unmittelbar an obiger Gleichung ablesen, indem Axz, als ,Radius® r und die
Komponenten von ACy, als kartesische Koordinaten aufgefasst werden:

T = COS7YCOSX T
Yy =cosysiny - r
z=—siny-r
Die entsprechende Riicktransformation ergibt sich durch Auflésen der dritten Glei-
chung:
. [z
v = — arcsin (—)
’
Division der zweiten durch die erste Gleichung:

= arctan ()
x = arctan | =
T

und natiirlich Kraft des guten alten Pythagoras-3D:

r =22+ y?+ 22

Ziehen oder Driicken?

Eine interessante Frage, die schon auf mancher LAN-Party zu heiflen Diskussionen An-
lass gegeben hat, ist die nach der ,Mausumkehr“. Wohin soll der Blick gehen, wenn die
Maus herangezogen wird? Nach unten, weil sich ja auch der Mauszeiger auf dem senk-
rechten Bildschirm (und damit auch der Blick des ihm folgenden Nutzers) beim Ziehen
nach unten bewegt? Oder doch lieber nach oben, wie man es in einer Flugsimulation
beim Heranziehen des Steuerkniippel gewohnt ist? Praktisch alle derzeitigen Spiele fa-
vorisieren in ihrer Standardeinstellung den ersten Fall, bieten aber die Moglichkeit, die
Mausrichtung dauerhaft zu invertieren. Manche Spiele beinhalten sogar zwei Szenarien;
einen Ego-Shooter und einen Flugsimulator. Konsequenterweise gibt es daher in moder-
nen Spielen (Battlefield 2, ...) auch fiir jeden Teilbereich einen Einzelschalter, um die
Maus zu invertieren. Auch doom bietet natiirlich iiber die Taste m die Moglichkeit, die
Mausumkehr ein- bzw. auszuschalten.

Im dualen Studiengang ILST (Internationaler Studiengang Luftfahrtsystemtechnik und
-management) werden Studierende an der Hochschule Bremen zu Luftfahrtingenieu-
ren (B.Eng.) und gleichzeitig an einer Flugschule zu Verkehrsflugzeugpiloten (ATPL)
ausgebildet. Im Rahmen einer kleinen Umfrage [!] wurden diese angehenden ,Piloten-
Ingenieure“ zu ihren Mausumkehrpraferenzen befragt. Tatséchlich nutzen naturgeméaf
fast alle Befragten im Flugsimulator die Mausumkehr (Ziehen = Nase hoch). Interessan-
terweise schaltet aber die Hélfte der Studierenden im Ego-Shooter (und damit auch in
ihrem Kopf!) die Mausumkehr wieder aus; teilweise, ohne sich dariiber Gedanken zu
machen. Die grenzwertige Frage, ob ein 3D-Bewegen im God Mode denn nicht eigentlich
auch eine Flugsimulation darstellt, bleibt vorerst unbeantwortet...

Literatur

[1] Buchholz, J.J., Doom.m, MATLAB-Programm auf MATLAB CENTRAL File Ex-
change,
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?
objectId=9340&objectType=FILE

[2] The Mathworks, Most Downloaded This Week, MATLAB CENTRAL File Exchange,
http://buchholz.hs-bremen.de/doom/doom platz_1.png

[3] Hirsch, S., 3D Navigation, Pick of the Week auf MATLAB CENTRAL,
http://blogs.mathworks.com/pick/?p=1632

[4] Buchholz, J.J., Unfrage zur Mausumkehr bei Ego-Shootern und Flugsimulatoren,
http://www.fbm.hs-bremen.de/sachma/ergebnis.aspx?db=doom

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9340&objectType=FILE
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9340&objectType=FILE
http://buchholz.hs-bremen.de/doom/doom_platz_1.png
http://blogs.mathworks.com/pick/?p=1632
http://www.fbm.hs-bremen.de/sachma/ergebnis.aspx?db=doom

