
Matlab Goes doom

Jörg J. Buchholz

13. September 2006

Einleitung

Sagt Ihnen die Tastenkombination W-A-S-D etwas? Haben Sie Ihrem halbwüchsigen
Sohn schon mal über die Schulter gesehen, wenn er seinen neuesten Ego-Shooter spielt
und darauf geachtet, wo die Finger seiner linken Hand liegen? Können Sie sich vorstellen,
dass er sich intuitiv weitaus schneller und sicherer durch dreidimensionale Datendarstel-
lungen in Matlab bewegen kann als Sie mit Ihren guten alten zoom-, pan- und rotate-
Schaltflächen; und das auch noch, ohne zu wissen, dass der Begriff

”
Matrix“ nicht nur

im Kino, sondern auch in der Mathematik eine Bedeutung besitzt?

Die kommende Generation von Ingenieuren wird bei der Bewegung durch dreidimensio-
nale Welten die Steuerung verwenden (wollen), mit der sie aufgewachsen ist: Die Maus
schwenkt die Blickrichtung nach oben, unten, rechts und links und die Tasten bewegen
den Betrachter auf die in Abbildung 1 definierte Weise in den drei räumlichen Freiheits-
graden. Auf Matlab Central [1] finden Sie eine erste Matlab-Implementation dieses
Navigationsschemas (Ende 2005 sofort Platz 1 der

”
Most Downloaded This Week“ [2]

1



Abbildung 1: Tastenbelegung in Counter Strike Source

und
”
Pick of the Week“ Anfang 2006 [3]). Dieser Artikel soll nun ein wenig Licht auf die

nahtlose Eleganz werfen, mit der sich doom in Matlab einfügt.

Wo bin ich?

Um die Funktionsweise von doom genauer verstehen zu können, ist es sinnvoll und not-
wendig, zunächst ein paar Koordinatensysteme, Transformationswinkel und Kamera-
vektoren zu definieren. Links unten in Abbildung 2 befindet sich der Ursprung des in
rot dargestellten Basiskoordinatensystems, das als geodätisches Koordinatensystem be-
zeichnet wird und daher den Index g trägt. Matlab drückt alle Vektoren in diesem
Koordinatensystem aus. Beispielsweise liefert der Befehl

C_P = get (gca , ’CameraPosition ’)

die geodätischen Koordinaten der aktuellen Position der Kamera, mit der Matlab Ob-
jekte

”
aufnimmt“. Die Kamera befindet sich also in Abbildung 2 an der Spitze des

Camera-Position-Vektors CP und
”
blickt“ in Richtung des Camera-View-Vektors CV ,

an dessen Spitze sich das darzustellende Objekt befindet. Der Befehl

C_T = get (gca , ’CameraTarget ’)

2



gibt den Camera-Target-Vektor CT zurück, der die geodätischen Koordinaten der Po-
sition des betrachteten Objekts beinhaltet. Der Blickrichtungsvektor CV der Kamera
lässt sich daher durch eine einfache Vektordifferenz aus den anderen beiden Vektoren
berechnen:

CV = CT −CP

Der Camera-View-Vektor CV wiederum definiert die xv-Achse des in Abbildung 2 blau
dargestellten view-festen Koordinatensystems, dessen Achsen den Index v tragen und
das die Lage (Ausrichtung) der Kamera im Raum festlegt.

xg
yv

k

zv

xv

yg

zg

g

c

xg yg

zg

CT

CV

CP

g

c

Abbildung 2: Zusammenhang zwischen dem Camera-Target-, dem Camera-Position-
und dem Camera-View-Vektor (CT = CP + CV ) und Transformation des
geodätischen Koordinatensystems (Index g) in das view-feste Koordina-
tensystem (Index v) über die Drehwinkel χ (Azimut) und γ (Elevation)

Dabei wird die yv-Achse des view-festen Koordinatensystems ganz bewusst in die Hori-
zontalebene (also in die durch xg und yg aufgespannte Ebene) gelegt, so dass ein Rollen
der Kamera um ihre Blickrichtung (xv) nicht möglich ist. Dass dies eine sinnvolle Ein-
schränkung ist, wird Ihnen sofort klar, wenn Sie “um Ihre eigene Blickrichtung rollen“,

3



wenn Sie also Ihren Kopf langsam zur Seite neigen, so dass sich ein Ohr Ihrer Schulter
nähert. Und - kippt während dieser Bewegung das Bild, das Sie wahrnehmen? Natürlich
nicht; solange der Winkel nicht zu schnell zu groß wird (und Sie nüchtern sind),

”
rechnet

Ihr bordeigenes steadycam-Bildverarbeitungssystem Rollwinkel in Echtzeit automatisch
weg“.

Augen links! Kopf hoch!

In
”
wissenschaftlichen“ 3D-Steuerungen (Matlab: Orbit Camera, rotate3d) bewegt

sich die Kamera häufig mit konstantem Abstand um das betrachtete Objekt herum und
richtet den Blick dabei immer auf das Objekt. In Abbildung 2 bleibt also CT (und
damit auch die Spitze von CV ) fest, während sich der Anfangspunkt von CV auf einer
Kugeloberfläche bewegt. Für den Nutzer sieht das dann so aus, als ob er mit der Maus
das Objekt mitsamt seinem Achsensystem dreht.

In Ego-Shootern sind translatorische und rotatorische Kamerabewegungen voneinander
entkoppelt; die Translation wird über die Tastatur gesteuert, die Rotation geschieht mit
Hilfe der Maus.

In Abbildung 2 bedeutet dies, dass eine Mausbewegung den Camera-View-Vektor CV um
seinen festen Anfangspunkt dreht. Dabei bewirkt eine links-rechts-Bewegung der Maus
eine Gierbewegung von CV in der Horizontalebene (

”
Kopf blickt zur Seite“), während

eine vor-zurück-Mausbewegung den Vektor CV und damit den Kopf auf- bzw. abnicken
lässt. Einer meiner Studenten drückte es einmal so aus:

”
Ich stelle mir vor, meine Hand

läge (statt auf der Maus) auf dem Kopf der Person, die ich im Spiel steuere.“

Wie in Abbildung 3 dargestellt, wird zur Interpretation einer Mausbewegung zuerst der
Camera-View-Vektor CV als Differenz zwischen Camera-Target-Vektor CT und Camera-
Position-Vektor CP berechnet. CV wird dann in seine Kugelkoordinaten (Azimut χ, Ele-
vation γ und Betrag) zerlegt. Der Weg, den die Maus seit ihrer letzten Abfrage zurück-
gelegt hat, führt schließlich zu einer Veränderung von Azimut und Elevation (∆χ: links-
rechts, ∆γ: vor-zurück), so dass nach einer Rücktransformation in kartesische Koor-
dinaten der veränderte Camera-View-Vektor und - in Summe mit dem unveränderten
Camera-Position-Vektor - der neue Camera-Target-Vektor berechnet werden kann.

Ein weiterer Unterschied zwischen wissenschaftlicher Anwendung und Ego-Shooter be-
steht in der Fixierung des Mauszeigers. In einem Ego-Shooter bewegt eine Mausbewe-
gung nicht den Mauszeiger auf dem Bildschirm sondern nur den Blick auf das dargestellte
Objekt. Der Mauszeiger (resp. das Fadenkreuz einer Waffe) bleibt dabei ortsfest - bei-
spielsweise in der Mitte - des aktuellen Fensters. In doom ist dieses Verhalten realisiert,
indem in jedem Aufruf des Mausbewegungsunterprogrammes der Mauszeiger aktiv in
die Mitte des aktuellen Fensters

”
zurückgesetzt“ wird:

4



C
T

C
V

C
V

’ C
T

’

C
P

C
P

-
sph

sphcart
g c,

D Dg c,

g c’, ’

cart

Abbildung 3: Eine Mausbewegung verändert Azimut χ und Elevation γ, damit die La-
ge des Camera-View-Vektors CV und damit auch den Camera-Target-
Vektor CT .

figure_position = get (gcf , ’position ’);
x_center = figure_position (1) + figure_position (3)/2;
y_center = figure_position (2) + figure_position (4)/2;
set (0, ’PointerLocation ’, [x_center , y_center ]);

God Mode

Während die Maus also die Kopfdrehung eines ortsfesten Beobachters steuert, bewegt
sich der Beobachter selbst in einem Ego-Shooter mit der Tastatur durch den Raum.
Wie in Abbildung 1 festgelegt, bewirken dabei üblicherweise die Tasten w und s eine
vor- bzw. zurück-Bewegung, während a und d den ganzen Beobachter nach links bzw.
rechts verschieben. Die dritte Achse (unten/oben) wird häufig durch die Taste Strg

und die Leertaste angesteuert. Während Strg in vielen Spielen dazu führt, dass sich die
Spielperson duckt, also in die Hocke geht, wird die Leertaste meistens zum Springen
(nach oben) verwendet.

Einige Spiele kennen einen so genannten
”
God Mode“, der sich manchmal durch

”
Cheats“

aktivieren lässt oder nach dem virtuellen Ableben der Spielperson automatisch einge-
schaltet wird. Im

”
God Mode“ kann sich die Spielperson in allen drei Achsen - also auch

durch Wände und Decken - frei bewegen.

Dabei stellt sich natürlich die entscheidende Frage, nach einer eindeutigen Definition der
Begriffe vorne, hinten, rechts, links, oben und unten. Ist vorne beispielsweise immer in
Nordrichtung festgelegt oder zeigt meine Nase immer nach vorne, egal wohin ich mich

5



drehe? Wo ist oben, wenn ich im Gras liege und den Himmel betrachte? Und unter Wasser
oder im Weltraum; Kann ein Raumschiff nach links abbiegen? Einige Spiele verwenden
hier eine zuweilen recht kontra-intuitive Mischung aus geodätischen und view-festen
Achsen; doom definiert alle translatorischen Bewegungsrichtungen konsequent im view-
festen Achsensystem. Die Taste w bewegt die Spielperson tatsächlich in die Richtung, in
die das Riechorgan momentan weist; wenn sie auf dem Rücken liegt, also himmelwärts.
Mit w bewegt man sich also näher an das betrachtete Objekt heran und kann (God
Mode sei dank) auch durch Objekte

”
hindurch fliegen“. Ohne Blickrichtungsänderung

entfernt man sich daher dann - nach
”
hinterem“ Objekthüllenaustritt - mit weiterhin

gedrückter w-Taste natürlich wieder vom Objekt weg. Die Taste d bewegt in Richtung des
rechten Ohrs und die Leertaste zieht die Spielperson immer in Richtung seiner eigenen
Schädeldecke; auch wenn dies zu einer (geodätisch gesehen) waagerechten Bewegung
führt, weil die Augen gerade auf den

”
Erdmittelpunkt“ gerichtet sind.

In Abbildung 2 lassen sich die Bewegungen besonders anschaulich darstellen: Die Tasten
w und s bewegen den gesamten Camera-View-Vektor CV entlang seiner Wirkungslinie
in positive bzw. negative xv-Richtung, a und d verschieben CV parallel zu sich selbst
in Richtung der negativen bzw. positiven yv-Achse, während Strg und Leertaste eine
Bewegung des Camera-View-Vektors in positive bzw. negative zv-Achsenrichtung bewir-
ken.

C
T

C
V

C
T

’

C
P

’C
P

-
sph

cart
g c,

DC
Vv

DC
VgM

gv

W

A S D

Strg Space

Abbildung 4: Mit der Tastatur wird eine Verschiebung des Camera-View-Vektors CV

in Richtung der view-festen Achsen definiert (∆CVv). Diese wird mit Hil-
fe der Winkel χ und γ ins geodätische Koordinatensystem transformiert
(∆CVg) und bewirkt dort eine gleichzeitige Veränderung des Camera-
Target-Vektor CT und des Camera-Position-Vektor CP .

6



Abbildung 4 veranschaulicht die translatorische Bewegung nochmals in Form eines Block-
schaltbildes. Wie schon bei der Rotation werden die Lagewinkel χ und γ, die die La-
ge des view-festen gegenüber dem geodätischen Koordinatensystems beschreiben, als
Kugelkoordinaten des Camera-View-Vektors CV berechnet, der sich wiederum aus der
Differenz zwischen Camera-Target-Vektor CT und Camera-Position-Vektor CP ergibt.
Aus den beiden Lagewinkel wird dann die Transformationsmatrix Mgv gebildet, mit der
sich Vektoren vom view-festen ins geodätische Koordinatensystem transformieren lassen
(s. Kapitel Matrix Reloaded). Jede Taste (w a s d. . . ) liefert nun eine Verschiebung des
Camera-View-Vektors entlang jeweils einer Achsenrichtung des view-festen Koordinaten-
systems (∆CVv). Da Camera-Target- und Camera-Position-Vektor aber im geodätischen
Koordinatensystem definiert sind, muss der Verschiebungsvektor durch Multiplikation
mit der Transformationsmatrix ebenfalls im geodätische Koordinatensystem ausgedrückt
werden (∆CVg), bevor er zu den Camera-Vektoren addiert wird und so ihre Verschiebung
bewirkt.

In vielen Spielen bewirkt die Shift-Taste (⇑) eine Erhöhung oder Erniedrigung der Be-
wegungsgeschwindigkeit (vgl. Abbildung 1). Auch in doom beschleunigt das gleichzeitige
Drücken von Shift die Geschwindigkeit einer anderen Taste um das Zehnfache.

Sehr interessiert wäre der Autor von doom übrigens an einer Möglichkeit, unter Matlab
zwei gleichzeitig gedrückte Primärtasten (beispielsweise w und a) abzufragen.

Matrix Reloaded

Mathematisch lässt sich die Lage des Blickrichtungsvektors übersichtlich mittels zweier
Drehmatrizen beschreiben. Man stelle sich dazu vor, das view-feste Koordinatensystem
(Index v in Abbildung 2) wäre anfänglich mit dem (verschobenen) geodätischen Koordi-
natensystem (Index g) identisch. Die erste Drehung findet dann mit dem Azimutwinkel χ
in der xg-yg-Ebene um die zg-Achse statt. Dabei wird die xv-Achse in die Zwischenachse
k gedreht und die yv-Achse landet in ihrer endgültigen Lage. Bei der zweiten Drehung
wird mit dem Elevationswinkel γ in der xv-zv-Ebene um die yv-Achse gedreht, um die
xv-Achse aus der Zwischenachse k und die zv-Achse aus der zg-Achsenrichtung in ihre
jeweilige Endlage zu befördern.

Die Gesamttransformationsmatrix Mvg vom geodätischen ins view-feste Koordinaten-
system ergibt sich dann als Produkt der beiden Einzeldrehmatrizen:

Mvg =

cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ


 cos χ sin χ 0

− sin χ cos χ 0

0 0 1

 =

cos γ cos χ cos γ sin χ − sin γ

− sin χ cos χ 0

sin γ cos χ sin γ sin χ cos γ



7



Die Rücktransformation vom view-festen ins geodätische Koordinatensystem lässt sich
sehr einfach berechnen, da die Inverse einer orthogonalen Drehmatrix freundlicherweise
gleich ihrer Transponierten ist:

Mgv = MT
vg =

cos γ cos χ cos γ sin χ − sin γ

− sin χ cos χ 0

sin γ cos χ sin γ sin χ cos γ


T

=

cos γ cos χ − sin χ sin γ cos χ

cos γ sin χ cos χ sin γ sin χ

− sin γ 0 cos γ


Mit Mgv lässt sich jetzt die Verschiebung der Kameravektoren auf Grund eines Tas-
tendrucks sehr übersichtlich formulieren. Wenn der Nutzer beispielsweise die Taste w

drückt, um die Kamera nach vorne zu bewegen, definiert er dadurch einen Verschie-
bungsvektor, der im view-festen Koordinatensystem nur eine x-Komponente besitzt

∆CVv =
[
∆x 0 0

]T

v
. Um die benötigte Verschiebung im geodätischen Koordinatensys-

tem zu erhalten (vgl. Abbildung 4) muss CVv von links mit der Transformationsmatrix
Mgv multipliziert werden, wobei erfreulicherweise nur die erste Spalte von Mgv benötigt
wird:

∆CVg = Mgv · ∆CVv =

cos γ cos χ · ·
cos γ sin χ · ·
− sin γ · ·

 ·

∆x

0

0


v

=

cos γ cos χ

cos γ sin χ

− sin γ

 · ∆xv

Auch die anderen Tasten sprechen - bedingt durch die reine Bewegung in view-feste
Achsenrichtungen - nur jeweils eine Spalte von Mgv an.

Die in Abbildung 3 benötigte Transformation von Kugel- in kartesische Koordinaten
lässt sich unmittelbar an obiger Gleichung ablesen, indem ∆xv als

”
Radius“ r und die

Komponenten von ∆CVg als kartesische Koordinaten aufgefasst werden:

x = cos γ cos χ · r
y = cos γ sin χ · r
z = − sin γ · r

Die entsprechende Rücktransformation ergibt sich durch Auflösen der dritten Glei-
chung:

γ = − arcsin
(z

r

)
Division der zweiten durch die erste Gleichung:

χ = arctan
(y

x

)
und natürlich Kraft des guten alten Pythagoras-3D:

r =
√

x2 + y2 + z2

8



Ziehen oder Drücken?

Eine interessante Frage, die schon auf mancher LAN-Party zu heißen Diskussionen An-
lass gegeben hat, ist die nach der

”
Mausumkehr“. Wohin soll der Blick gehen, wenn die

Maus herangezogen wird? Nach unten, weil sich ja auch der Mauszeiger auf dem senk-
rechten Bildschirm (und damit auch der Blick des ihm folgenden Nutzers) beim Ziehen
nach unten bewegt? Oder doch lieber nach oben, wie man es in einer Flugsimulation
beim Heranziehen des Steuerknüppel gewohnt ist? Praktisch alle derzeitigen Spiele fa-
vorisieren in ihrer Standardeinstellung den ersten Fall, bieten aber die Möglichkeit, die
Mausrichtung dauerhaft zu invertieren. Manche Spiele beinhalten sogar zwei Szenarien;
einen Ego-Shooter und einen Flugsimulator. Konsequenterweise gibt es daher in moder-
nen Spielen (Battlefield 2, . . . ) auch für jeden Teilbereich einen Einzelschalter, um die
Maus zu invertieren. Auch doom bietet natürlich über die Taste m die Möglichkeit, die
Mausumkehr ein- bzw. auszuschalten.

Im dualen Studiengang ILST (Internationaler Studiengang Luftfahrtsystemtechnik und
-management) werden Studierende an der Hochschule Bremen zu Luftfahrtingenieu-
ren (B.Eng.) und gleichzeitig an einer Flugschule zu Verkehrsflugzeugpiloten (ATPL)
ausgebildet. Im Rahmen einer kleinen Umfrage [4] wurden diese angehenden

”
Piloten-

Ingenieure“ zu ihren Mausumkehrpräferenzen befragt. Tatsächlich nutzen naturgemäß
fast alle Befragten im Flugsimulator die Mausumkehr (Ziehen = Nase hoch). Interessan-
terweise schaltet aber die Hälfte der Studierenden im Ego-Shooter (und damit auch in
ihrem Kopf!) die Mausumkehr wieder aus; teilweise, ohne sich darüber Gedanken zu
machen. Die grenzwertige Frage, ob ein 3D-Bewegen im God Mode denn nicht eigentlich
auch eine Flugsimulation darstellt, bleibt vorerst unbeantwortet...

Literatur

[1] Buchholz, J. J., Doom.m, Matlab-Programm auf Matlab Central File Ex-
change,
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?

objectId=9340&objectType=FILE

[2] The Mathworks, Most Downloaded This Week, Matlab Central File Exchange,
http://buchholz.hs-bremen.de/doom/doom platz 1.png

[3] Hirsch, S., 3D Navigation, Pick of the Week auf Matlab Central,
http://blogs.mathworks.com/pick/?p=1632

[4] Buchholz, J. J., Umfrage zur Mausumkehr bei Ego-Shootern und Flugsimulatoren,
http://www.fbm.hs-bremen.de/sachma/ergebnis.aspx?db=doom

9

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9340&objectType=FILE
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9340&objectType=FILE
http://buchholz.hs-bremen.de/doom/doom_platz_1.png
http://blogs.mathworks.com/pick/?p=1632
http://www.fbm.hs-bremen.de/sachma/ergebnis.aspx?db=doom

