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1 Einleitung

Eine Aufgabe im Rahmen des US/German Memorandum of Understanding (Helico-
pter Aeromechanics) [1] beinhaltet die gemeinsame und komplementäre Entwicklung
von Turbulenzmodellen für Hubschrauber und deren Anwendung in der Simulation und
Regelung. Das generelle Prinzip ist in Abb. 1 dargestellt, der Realisierungsansatz der US
Army ist in [2] und [3] beschrieben. Die vorliegende Abhandlung beschreibt die alterna-
tive Realisierung auf der Basis vonMatlab/Simulink, die von den deutschen Partnern
� Hochschule Bremen und DLR � eingebracht wurde. Beiden Ansätzen ist der Vergleich
der Hubschrauberdynamik in ungestörter Atmosphäre zu der bei unterschiedlichen Tur-
bulenzbedingungen gemeinsam.
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Abbildung 1: Extraktion des Turbulenzmodells
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Dazu stabilisiert ein Pilot einen Hubschrauber in turbulenter (δT ) Atmosphäre (beispiels-
weise durch Hovern auf der Leeseite eines hohen Gebäudes), wobei sowohl die Piloten-
steuereingabe (δP ) als auch die Reaktion (x) des Hubschraubers gemessen wird. In der
anschlieÿenden O�line-Rechnung wird x durch ein inverses Modell des Hubschraubers
geschickt, so dass man die x reproduzierende Gesamtsteuereingabe δP+T erhält. Durch
Subtraktion der gemessenen Pilotensteuereingabe δP verbleibt die turbulenzäquivalen-
te Steuereingabe δTeq, die in einem Simulator zur Turbulenzsimulation ohne expliziten
Turbulenzeingang direkt auf die reale Pilotensteuereingabe gemischt werden kann. Von
zentraler Bedeutung ist dabei die exakte und implementierbare Inversion des dynami-
schen Hubschraubermodelles. Die dazu verwendeten Verfahren werden im Folgenden
diskutiert.

G G*
u y = u* y*

Abbildung 2: Inversion eines allgemeinen dynamischen Systems

Abb. 2 zeigt die Inversion eines allgemeinen dynamischen Systems. Dabei sind u und
y die Ein- bzw. Ausgangsgröÿe des zu invertierenden Systems G, während u? und y?

die Ein- bzw. Ausgangsgröÿe des inversen Systems G? bezeichnen. Wenn G? eine exakte
dynamische Inverse von G ist, dann ergibt eine Reihenschaltung beider Systeme

u? = y (1)

ein System, in dem der Gesamteingang und -ausgang identisch sind

y? = u. (2)

2 Inversion einer Übertragungsfunktion

Wenn das zu invertierende System linear und zeitinvariant ist (LTI), keine Totzeiten
und nur eine Eingangsgröÿe und eine Ausgangsgröÿe besitzt (SISO), lässt es sich als
gebrochen rationale Übertragungsfunktion darstellen

G(s) =
bmsm + . . . + b1s + b0

sn + . . . + a1s + a0

=
Z(s)

N(s)
. (3)

Die Inversion geschieht dann einfach durch Vertauschen von Zähler und Nenner

G?(s) =
1

G(s)
=

N(s)

Z(s)
. (4)
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Die Pole des Originalsystems werden daher zu den Nullstellen des invertierten Systems
und umgekehrt.Matlab führt die Inversion einer Übertragungsfunktion mit dem über-
ladenen inv-Befehl aus

>> G_tf = tf ([0.1 1], [1 1])

Transfer function:

0.1 s + 1

---------

s + 1

>> G_star_tf = inv (G_tf)

Transfer function:

s + 1

---------

0.1 s + 1

Simulink kann jetzt das in Abb. 3 dargestellte Gesamtsystem simulieren.

G_tf

System

Scope

G_star_tf

Inverse SystemDoublet

Abbildung 3: Blockschaltbild der Inversion einer Übertragungsfunktion

In Abb. 4 wird deutlich, dass die Eingangsdoublette, die ja mit ihren hohen Frequenzan-
teilen durchaus eine Herausforderung für den Inverter darstellt, schon mit Simulinks
Standardsimulationsparametern perfekt wieder hergestellt wird.
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Abbildung 4: Ergebnis der Inversion einer Übertragungsfunktion

3 Inversion im Zustandsraum

Die Inversion eines dynamischen Systems kann natürlich auch im Zustandsraum durch-
geführt werden. Die übliche Zustandsraumdarstellung eines LTI-Systems lautet

ẋ = Ax + Bu (5)

y = Cx + Du. (6)

Wenn die Durchgangsmatrix D regulär ist, kann Gl. 6 nach dem Eingangsvektor u
aufgelöst werden

u = D−1 (y −Cx)

= −D−1Cx + D−1y. (7)
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Eingesetzt in Gl. 5 ergibt sich dann

ẋ = Ax + B
(
−D−1Cx + D−1y

)
=

(
A−BD−1C

)
x + BD−1y. (8)

Für das inverse System müssen gemäÿ Gl. 1 � 2 in Gl. 7 � 8 die Eingangs- bzw. Aus-
gangsgröÿen vertauscht werden

ẋ? =
(
A−BD−1C

)
x? + BD−1u? (9)

y? = −D−1Cx? + D−1u?. (10)

In Gl. 9 � 10 lassen sich die Matrizen des inversen Systems direkt ablesen

D? = D−1 (11)

C? = −D−1C = −D?C (12)

B? = BD−1 = BD? (13)

A? = A−BD−1C = A−B?C = A + BC?. (14)

Matlab verwendet Gl. 11 � 14 bei der Anwendung des inv-Befehls auf ein System in
Zustandsraumdarstellung

>> G_ss = ss (G_tf);

>> [A, B, C, D] = ssdata (G_ss)

A =

-1

B =

1

C =

0.9000

D =

0.1000

>> G_star_ss = inv (G_ss);

>> [A_star, B_star, C_star, D_star] = ssdata (G_star_ss)

A_star =

-10

B_star =

10

C_star =

-9

D_star =

10
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Das Simulationsergebnis ist mit der in Abb. 4 dargestellten Inversion der Übertragungs-
funktion identisch.

4 Improper Inversion

Da bei der gerade verwendeten Beispielübertragungsfunktion (0.1s+1
s+1

) Zähler- und Nenner-
grad gleich sind, ist diese, genau wie ihre Inverse, biproper, also proper (Nenner- gröÿer
oder gleich Zählergrad) aber nicht strictly proper (Nenner- gröÿer Zählergrad). Beide
Systeme können daher problemlos dargestellt und simuliert werden.

Leider aber sind viele technische Systeme auf Grund ihres Tiefpasscharakters strictly
proper, so dass ihre Inversen improper (Zähler- gröÿer Nennergrad) sind und sich daher
zwar berechnen, aber weder in den Zustandsraum transformieren noch direkt simulieren
lassen.

>> G_tf = tf (1, [1 1])

Transfer function:

1

-----

s + 1

>> G_star_tf = inv (G_tf)

Transfer function: s + 1

>> G_star_ss = ss (G_star_tf)

??? Error using ==> tf/ss Improper system. Conversion to state-space

is not possible

>> step (G_star_tf)

??? Error using ==> rfinputs Not supported for non-proper models.

Jetzt wäre es natürlich möglich, das inverse System unter Simulink mit einem De-
rivative-, einem Gain- und einem Sum-Block zu modellieren; üblicherweise wird die
Übertragungsfunktion allerdings einfach durch so viele zusätzliche hochfrequente Pole
ergänzt, bis sie proper ist.

>> G_filt = tf (1, [1e-3 1])

Transfer function:

1
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-----------

0.001 s + 1

>> G_prop_star_tf = G_star_tf*G_filt

Transfer function:

s + 1

-----------

0.001 s + 1
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Abbildung 5: Instabilität verursacht durch nicht angepasstes Integrationsverfahren

Abb. 5 zeigt das eindrucksvolle Resultat des Versuches, das Gesamtsystem (gemäÿ
Abb. 3) mit Simulinks Standardparametern (Solver type: Variable-step ode45, Re-
lative tolerance: 1e-3) zu simulieren. O�ensichtlich gelingt es dem Dormand-Prince-
Integrationsverfahren nicht, die Schrittweite für das moderat steife System (Zeitkon-
stantenverhältnis 1000) korrekt anzupassen. Bei der Wahl der Frequenz der zusätzlichen

7



Pole muss ein Kompromiss gefunden werden, da die Pole auf der einen Seite schnell
genug sein sollen, um keine zusätzliche signi�kante parasitäre Dynamik einzuführen; auf
der anderen Seite erhöhen Pole, die sehr viel schneller als das eigentliche System sind, die
Bandbreite des Gesamtsystem, machen es steifer und damit für Integrationsverfahren,
die nicht für steife Systeme vorgesehen sind, schwerer zu integrieren.

Bei Verwendung eines Verfahrens mit hinreichend kleiner fester Schrittweite (Solver type:
Fixed-step ode4, Fixed-step size: 0.001) oder eines für steife Systeme ausgelegten Ver-
fahrens (Solver type: Variable-step ode15s) sieht das Simulationsergebnis dann wieder
so unspektakulär wie in Abb. 4 aus. Dabei geht die Wirkung der hochfrequenten Pole
in der Strichstärke unter.

5 Proper Inversion

Das in Abb. 6 dargestellte Inversionsverfahren lässt sich auch auf MIMO (Multi Input
Multi Output) und auf nichtlineare Systeme anwenden. Dazu wird das zu invertierende
System in den Rückführzweig eines Regelkreises mit sehr hoher Reglerverstärkung (z.B.
K = 999) eingesetzt und die Eingangsgröÿe des Systems als Ausgangsgröÿe des inversen
Systems aufgefasst.

                                                                                             

G_tf

System

Scope

K

GainDoublet

G_tf

 System 

u
y = u*

y*

Abbildung 6: Blockschaltbild der Proper Inversion

Die Übertragungsfunktion des Inverters lautet dann

G?(s) =
y?

u?
=

K

1 + K ·G(s)

=
K

1 + K · Z(s)
N(s)

=
K ·N(s)

N(s) + K · Z(s)
. (15)
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Es wird deutlich, dass die Nullstellen von G? den Polen von G entsprechen (unabhängig
von der Gröÿe von K) und dass die Pole von K abhängen: Für kleine K �beginnen�
die Pole von G? in den Polen von G; wenn K wächst, nähern sich die Pole von G? den
Nullstellen von G

lim
K→∞

G?(s) =
N(s)

Z(s)
. (16)

Gl. 16 ist - streng genommen - ein wenig irreführend, da es so aussieht, als ob G? so viele
Pole hat wie G Nullstellen, was aber natürlich nicht der Fall ist. Die Anzahl der Pole
eines Systems ändert sich durch die Rückführung nicht. Wenn G proper ist (n = Anzahl
der Pole ≥ m = Anzahl der Nullstellen) muss es daher n − m Pole geben, die, wenn
K wächst, nicht in die Nullstellen, sondern nach unendlich laufen. Diese zusätzlichen
Pole des inversen Systems machen das System automatisch proper und damit imple-
mentierbar. Ihre Position kann direkt durch K gesteuert werden. Für das Beispiel aus
Abschnitt 4 ergibt sich

G?(s) =
K

1 + K ·G(s)
=

K

1 + K 1
s+1

=
K(s + 1)

s + 1 + K
=

K
1+K

(s + 1)
s

1+K
+ 1

. (17)

Wenn jetzt K beispielsweise auf 999 gesetzt wird, hat das inverse System (verglichen
mit Abschnitt 4)

G?(s) =
999(s + 1)

s + 1000
=

0.999(s + 1)

0.001s + 1
(18)

die gleiche Nullstelle (−1), den gleichen hochfrequenten Pol (−1000) und eine marginal
unterschiedliche stationäre Verstärkung (0.999 statt 1).

Wenn eine exakte stationäre Verstärkung wichtig ist, kann ein statisches Vor�lter GP

mit

GP =
1

G(0) ·G?(0)
=

1 + K ·G(0)

K ·G(0)
(19)

mit dem Inverter in Reihe geschaltet werden.

Um die in Abb. 7 dargestellten Details korrekt zu simulieren, wurde das (für steife
Systeme geeignete) ode15s-Integrationsverfahren mit einer relativen Toleranzforderung
von 1e-6 verwendet.

Wieder muss ein Kompromiss gefunden werden, da hohe Verstärkungsfaktoren einer-
seits zwar den stationären Fehler und den Ein�uss der hochfrequenten Pole verringern,
andererseits aber die Bandbreite der Inversen vergröÿern und damit dem Integrations-
algorithmus das Leben schwer machen.
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Abbildung 7: Ergebnis der Proper Inversion

6 Mehrgröÿensysteme

Wenn das zu invertierende System mehr als eine Eingangs- bzw. Ausgangsgröÿe besitzt,
wird seine Inversion deutlich komplizierter.
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6.1 Beispiel

Das folgende quadratische System mit zwei Eingangs-, zwei Ausgangs- und drei Zu-
standsgröÿen soll in diesem Abschnitt als MIMO-Beispiel dienen

 A
... B

· · · · · · ·
C

... D

 =



−1 1 0
... 1 0

0 −1 1
... 1 0

−1 0 −1
... 0 1

· · · · · · · · · · · · · · · ·
0 1 0

... 0 0

0 0 1
... 0 0


. (20)

Matlab kann die Pole und (invarianten) Nullstellen des Systems berechnen

>> A = [-1, 1, 0; 0, -1, 1; -1, 0, -1];

>> B = [1, 0; 1, 0; 0, 1];

>> C = [0, 1, 0; 0, 0, 1];

>> D = zeros (2,2);

>> G_ss = ss (A, B, C, D);

>> zero (G_ss)

ans =

-1

>> pole (G_ss)

ans =

-2.0000

-0.5000 + 0.8660i

-0.5000 - 0.8660i

Alle Pole und Nullstellen liegen in der linken komplexen Halbebene, so dass sowohl das
System als auch seine Inverse stabil sind.

6.2 Numerische Inversion

Der Versuch, das System numerisch via inv-Befehl zu invertieren, führt zu einer Fehler-
meldung
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>> G_star_ss = inv (G_ss)

??? Error using ==> ss/inv Cannot invert system with singular D

matrix.

Wie schon erwähnt, verwendetMatlab Gl. 11 � 14, um ein in Zustandsraumdarstellung
gegebenes System zu invertieren. Gl. 11 versucht dabei, die Durchgangsmatrix D zu
invertieren, was im Beispiel bei einer Nullmatrix natürlich nicht gelingt.

6.3 Analytische Inversion

Glücklicherweise bietet Matlabs Symbolic Math Toolbox einen sehr eleganten Weg, das
System trotzdem zu invertieren. Dazu de�niert man eine symbolische Laplace-Variable
und verwendet direkt die aus der Laplace-Transformation der Zustandsgleichungen ent-
standene allgemeine Übertragungsmatrix

sX(s) = AX(s) + BU(s) (21)

X(s) = (sI−A)−1BU(s) (22)

Y(s) = CX(s) + DU(s)

= C(sI−A)−1BU(s) + DU(s) (23)

G(s) =
Y(s)

U(s)
= C(sI−A)−1B + D. (24)

>> syms s

>> G_sym = simple (C*inv (s*eye (3, 3) - A)*B + D);

>> pretty (G_sym)

[ s s + 1 ]

[ ---------- --------------------]

[ 2 2 ]

[ s + s + 1 (s + 2) (s + s + 1)]

[ ]

[ 2 ]

[ 1 (s + 1) ]

[- ---------- --------------------]

[ 2 2 ]

[ s + s + 1 (s + 2) (s + s + 1)]

Die analytische Inversion kann dann direkt mit dem symbolischen inv-Befehl erfolgen
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>> G_star_sym = inv (G_sym);

>> pretty (G_star_sym)

[s + 1 -1 ]

[ ]

[s + 2 s (s + 2)]

[----- ---------]

[s + 1 s + 1 ]

Zur Kontrolle kann gezeigt werden, dass das Produkt beider Matrizen die Einheitsmatrix
ergibt.

>> ident = simple (G_sym*G_star_sym)

ident =

[ 1, 0]

[ 0, 1]

Wie erwartet, sind einige der Übertragungsfunktionen von G_star_sym nicht proper; die
Inverse kann daher nicht direkt implementiert werden. Abhilfe scha�t auch hier wieder
ein schneller Tiefpass, der symbolisch de�niert und mit dem System multipliziert wird.

>> T_filt_sym = 1e-3;

>> G_filt_sym = 1/(T_filt_sym*s + 1);

>> G_star_filt_sym = G_star_sym*G_filt_sym;

>> pretty (G_star_filt_sym)

[ s + 1 1 ]

[ ------------ - ------------ ]

[ 1/1000 s + 1 1/1000 s + 1 ]

[ ]

[ s + 2 s (s + 2) ]

[---------------------- ----------------------]

[(1/1000 s + 1) (s + 1) (1/1000 s + 1) (s + 1)]

Die in [6] zu �ndende sym2tf-Funktion wandelt die symbolische Übertragungsmatrix
wieder in ihr numerisches Äquivalent, das sich direkt implementieren lässt.
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Abbildung 8: Blockschaltbild der proper Inversion im Zustandsraum

6.4 Proper MIMO Inversion

Die im Abschnitt 5 beschriebene Inversionsmethode kann, wie in Abb. 8 dargestellt, auch
im Mehrgröÿenfall verwendet werden, um die Inverse ohne weiteren Berechnungsaufwand
zu simulieren.

Die algebraische Schleife, bestehend aus D, K und den beiden äuÿeren Additionsblöcken
in Abb. 8, kann aufgebrochen werden

y? = K (u? − (Cx? + Dy?)) . (25)

Dies führt zu der inversen Ausgangsgleichung

(I + KD)y? = Ku? −KCx?

y? = − (I + KD)−1 KCx? + (I + KD)−1 Ku?, (26)
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der Zustandsgleichung

ẋ? = Ax? + By?

= Ax? + B
(
− (I + KD)−1 KCx? + (I + KD)−1 Ku?

)
=

(
A−B (I + KD)−1 KC

)
x? + B (I + KD)−1 Ku? (27)

und zum inversen System[
A? B?

C? D?

]
=

[(
A−B (I + KD)−1 KC

)
B (I + KD)−1 K

− (I + KD)−1 KC (I + KD)−1 K

]
. (28)

Zwei Eigenschaften dieses inversen Systems sollen hier erwähnt werden:

1. Wenn D vorhanden ist und K gegen unendlich läuft (wenn also wenigstens die
Diagonalelemente von KD sehr viel gröÿer als eins sind) kann die Einheitsmatrix
vernachlässigt werden, K kann �herausgekürzt� werden und die Matrixde�nitionen
entsprechen denen von Gl. 11 � 14; beispielsweise

lim
K→∞

D? = lim
K→∞

(I + KD)−1 K

= lim
K→∞

(KD)−1 K = lim
K→∞

D−1K−1K = D−1. (29)

2. Wenn das System strictly proper ist (D = 0), vereinfacht sich das inverse System
zu [

A? B?

C? D?

]
=

[
(A−BKC) BK

−KC K

]
. (30)

Im Vergleich mit Gl. 11 � 14 sieht man, dass K die Funktion von D−1 übernommen
hat; Groÿe K-Matrizen haben den gleichen �propernden� E�ekt wie die künstliche
Addition kleiner Werte zur D-Matrix.

7 Inversion eines nichtlinearen Systems

Die analytische Inversion nichtlinearer dynamischer Systeme ist im Allgemeinen nicht
möglich. Schon die Lösung eines scheinbar einfachen Problems wie des angeregten ma-
thematischen Pendels

ÿ + sin(y) = u, (31)

wobei y der Auslenkungwinkel und u der normierte Schub ist, führt über elliptische Inte-
grale zu Jacobischen Funktionen [4], die nicht gerade das tägliche Brot eines Ingenieurs
darstellen.
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Abbildung 9: Blockschaltbild der Inversion eines nichtlinearen Systems

Auf der anderen Seite lässt sich die Simulation der Inversen des nichtlinearen Pen-
dels nach der im Abschnitt 5 beschriebenen Methode problemlos durchführen. Die in
Abb. 9 verwendete extrem hohe Verstärkung von 1e12 erreicht eine in Abb. 10 darge-
stellte nahezu perfekte Rekonstruktion der Eingangsdoublette. Dabei wurde der ode15s-
Integrationsalgorithmus verwendet und alle seine Parameter (max step size, ..., absolute
tolerance) auf auto gesetzt.

8 Anwendungen

Im Rahmen des MoU wurden zur Turbulenzmodell-Identi�kation beide Inversionsver-
fahren (�Analytische Inversion� nach Abschnitt 6.3 und �Proper Inversion� nach Ab-
schnitt 6.4) erfolgreich auf drei verschiedene lineare Helikoptermodelle (UH-60 der NASA
in Ames und Bo-105 und EC-135 des DLR in Braunschweig) und reale Flugversuchs-
daten angewandt [3] und [6]. Bei der UH-60 wurde ein Modell mit 41 Zustandsgröÿen
(inklusive Rotor- und Stellerdynamik), 4 Eingangsgröÿen (lateraler und longitudinaler
Stick, Pedal und Kollektiv) und 4 Ausgangsgröÿen (Rollrate, Nickrate, Gierrate und
Vertikalgeschwindigkeit) verwendet, die DLR-Modelle besitzen die gleichen Ein- und
Ausgangsgröÿen aber 8 (Bo-105) bzw. 10 (EC-135) Zustandsgröÿen.

Hubschraubertypisch besitzen alle Modelle relativ langsame instabile Pole, so dass eine
Simulation der Modelle auch mit einer Inversen, die versucht, alle Pole durch entspre-
chende Nullstellen zu kompensieren, aus numerischen Gründen nur für einen begrenzten
Zeitraum stabil durchgeführt werden kann [6]. Erschwerend kommt hinzu, dass beim
UH-60-Modell vier Nullstellen in der rechten Halbebene liegen, so dass die entsprechende
Inverse zwei instabile Polpaare besitzt. Da die Nullstellen aber auÿerhalb des Nutzfre-
quenzbereichs des Hubschraubers liegen, lässt sich ihre Auswirkung durch eine in [5] und
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Abbildung 10: Ergebnis der Inversion eines nichtlinearen Systems

[6] beschriebene Spiegelung mit Hilfe eines Allpasses in eine für O�line-Anwendungen
unkritische Totzeit umwandeln.
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