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1 Einleitung

Eine Aufgabe im Rahmen des US/German Memorandum of Understanding (Helico-
pter Aeromechanics) [I] beinhaltet die gemeinsame und komplementire Entwicklung
von Turbulenzmodellen fiir Hubschrauber und deren Anwendung in der Simulation und
Regelung. Das generelle Prinzip ist in Abb. 1 dargestellt, der Realisierungsansatz der US
Army ist in [2| und [3] beschrieben. Die vorliegende Abhandlung beschreibt die alterna-
tive Realisierung auf der Basis von MATLAB/SIMULINK, die von den deutschen Partnern
— Hochschule Bremen und DLR — eingebracht wurde. Beiden Ansétzen ist der Vergleich
der Hubschrauberdynamik in ungestoérter Atmosphére zu der bei unterschiedlichen Tur-
bulenzbedingungen gemeinsam.
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Abbildung 1: Extraktion des Turbulenzmodells



Dazu stabilisiert ein Pilot einen Hubschrauber in turbulenter (67) Atmosphére (beispiels-
weise durch Hovern auf der Leeseite eines hohen Gebéudes), wobei sowohl die Piloten-
steuereingabe (0p) als auch die Reaktion (x) des Hubschraubers gemessen wird. In der
anschliefsenden Offline-Rechnung wird x durch ein inverses Modell des Hubschraubers
geschickt, so dass man die x reproduzierende Gesamtsteuereingabe dp, erhilt. Durch
Subtraktion der gemessenen Pilotensteuereingabe dp verbleibt die turbulenziquivalen-
te Steuereingabe 074, die in einem Simulator zur Turbulenzsimulation ohne expliziten
Turbulenzeingang direkt auf die reale Pilotensteuereingabe gemischt werden kann. Von
zentraler Bedeutung ist dabei die exakte und implementierbare Inversion des dynami-
schen Hubschraubermodelles. Die dazu verwendeten Verfahren werden im Folgenden
diskutiert.
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Abbildung 2: Inversion eines allgemeinen dynamischen Systems

Abb. 2 zeigt die Inversion eines allgemeinen dynamischen Systems. Dabei sind u und
y die Ein- bzw. Ausgangsgrofe des zu invertierenden Systems G, wihrend v* und y*
die Ein- bzw. Ausgangsgrofe des inversen Systems G* bezeichnen. Wenn G* eine exakte
dynamische Inverse von G ist, dann ergibt eine Reihenschaltung beider Systeme

ut=y (1)
ein System, in dem der Gesamteingang und -ausgang identisch sind
Y =u. (2)

2 Inversion einer Ubertragungsfunktion

Wenn das zu invertierende System linear und zeitinvariant ist (LTT), keine Totzeiten
und nur eine Eingangsgrofie und eine Ausgangsgrofe besitzt (SISO), ldsst es sich als
gebrochen rationale Ubertragungsfunktion darstellen

bs™ + ...+ bis+ by Z(s) 3)
s"+ ...+ a8+ ag N(s)

G(s) =

Die Inversion geschieht dann einfach durch Vertauschen von Zahler und Nenner
1 N(s)
= : (4)
G(s)  Z(s)

G*(s) =



Die Pole des Originalsystems werden daher zu den Nullstellen des invertierten Systems
und umgekehrt. MATLAB fiihrt die Inversion einer Ubertragungsfunktion mit dem iiber-
ladenen inv-Befehl aus

> G_tf = tf ([0.1 1], [1 11)

Transfer function:
0.1s +1

>> G_star_tf = inv (G_tf)

Transfer function:
s +1

SIMULINK kann jetzt das in Abb. 3 dargestellte Gesamtsystem simulieren.
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Abbildung 3: Blockschaltbild der Inversion einer Ubertragungsfunktion

In Abb. 4 wird deutlich, dass die Eingangsdoublette, die ja mit ihren hohen Frequenzan-
teilen durchaus eine Herausforderung fiir den Inverter darstellt, schon mit SIMULINKs
Standardsimulationsparametern perfekt wieder hergestellt wird.
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Abbildung 4: Ergebnis der Inversion einer Ubertragungsfunktion

3 Inversion im Zustandsraum

Die Inversion eines dynamischen Systems kann natiirlich auch im Zustandsraum durch-
gefiihrt werden. Die iibliche Zustandsraumdarstellung eines LTI-Systems lautet

% = Ax + Bu (5)
y = Cx + Du. (6)

Wenn die Durchgangsmatrix D regulédr ist, kann Gl. 6 nach dem FEingangsvektor u
aufgelost werden

u=D"'(y - Cx)
=-D'Cx+Dy. (7)



Eingesetzt in Gl. 5 ergibt sich dann
x=Ax+B (—DflCX + Dfly)
= (A-BD'C)x+BD'y. (8)

Fiir das inverse System miissen geméf Gl. 1 — 2 in Gl 7 — 8 die Eingangs- bzw. Aus-
gangsgrofen vertauscht werden

x*=(A-BD 'C)x*+BD 'u* (9)
y* = -D!'Cx* + D 'u*. (10)
In GI. 9 — 10 lassen sich die Matrizen des inversen Systems direkt ablesen
D* — Dfl
C*=-D'C=-D*C
B*=BD ! = BD*
A*=A-BD 'C=A-B*C=A+BC"

MATLAB verwendet Gl. 11 — 14 bei der Anwendung des inv-Befehls auf ein System in
Zustandsraumdarstellung

>> G_ss = ss (G_tf);
>> [A, B, C, D] = ssdata (G_ss)

A =
-1
B =
1
C =
0.9000
D =
0.1000

>> G_star_ss = inv (G_ss);
>> [A_star, B_star, C_star, D_star] = ssdata (G_star_ss)

A_star
-10
B_star =
10
C_star
-9
D_star
10



Das Simulationsergebnis ist mit der in Abb. 4 dargestellten Inversion der Ubertragungs-
funktion identisch.

4 Improper Inversion

Da bei der gerade verwendeten Beispieliibertragungsfunktion (Oslj—”fl) Zahler- und Nenner-

grad gleich sind, ist diese, genau wie ihre Inverse, biproper, also proper (Nenner- grofer
oder gleich Zahlergrad) aber nicht strictly proper (Nenner- grofer Zahlergrad). Beide
Systeme kénnen daher problemlos dargestellt und simuliert werden.

Leider aber sind viele technische Systeme auf Grund ihres Tiefpasscharakters strictly
proper, so dass ihre Inversen improper (Zihler- grofer Nennergrad) sind und sich daher
zwar berechnen, aber weder in den Zustandsraum transformieren noch direkt simulieren
lassen.

>> G_tf = tf (1, [1 1])

Transfer function:

>> G_star_tf = inv (G_tf)
Transfer function: s + 1

>> G_star_ss = ss (G_star_tf)
??? Error using ==> tf/ss Improper system. Conversion to state-space
is not possible

>> step (G_star_tf)
??? Error using ==> rfinputs Not supported for non-proper models.

Jetzt wire es natiirlich moglich, das inverse System unter SIMULINK mit einem De-
rivative-, einem Gain- und einem Sum-Block zu modellieren; iiblicherweise wird die
Ubertragungsfunktion allerdings einfach durch so viele zusitzliche hochfrequente Pole
ergdnzt, bis sie proper ist.

>> G_filt = tf (1, [le-3 1])

Transfer function:
1



0.001 s + 1
>> G_prop_star_tf = G_star_tfxG_filt

Transfer function:

s +1
0.001 s + 1
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Abbildung 5: Instabilitdt verursacht durch nicht angepasstes Integrationsverfahren

Abb. 5 zeigt das eindrucksvolle Resultat des Versuches, das Gesamtsystem (geméaf
Abb. 3) mit SIMULINKs Standardparametern (Solver type: Variable-step odel5, Re-
lative tolerance: 1e-3) zu simulieren. Offensichtlich gelingt es dem Dormand-Prince-
Integrationsverfahren nicht, die Schrittweite fiir das moderat steife System (Zeitkon-
stantenverhéltnis 1000) korrekt anzupassen. Bei der Wahl der Frequenz der zusétzlichen



Pole muss ein Kompromiss gefunden werden, da die Pole auf der einen Seite schnell
genug sein sollen, um keine zusétzliche signifikante parasitire Dynamik einzufiihren; auf
der anderen Seite erhohen Pole, die sehr viel schneller als das eigentliche System sind, die
Bandbreite des Gesamtsystem, machen es steifer und damit fiir Integrationsverfahren,
die nicht fiir steife Systeme vorgesehen sind, schwerer zu integrieren.

Bei Verwendung eines Verfahrens mit hinreichend kleiner fester Schrittweite (Solver type:
Fized-step ode4, Fized-step size: 0.001) oder eines fiir steife Systeme ausgelegten Ver-
fahrens (Solver type: Variable-step odelbs) sieht das Simulationsergebnis dann wieder
so unspektakuldr wie in Abb. 4 aus. Dabei geht die Wirkung der hochfrequenten Pole
in der Strichstirke unter.

5 Proper Inversion

Das in Abb. 6 dargestellte Inversionsverfahren ldsst sich auch auf MIMO (Multi Input
Multi Output) und auf nichtlineare Systeme anwenden. Dazu wird das zu invertierende
System in den Riickfithrzweig eines Regelkreises mit sehr hoher Reglerverstarkung (z.B.
K =999) eingesetzt und die Eingangsgrofe des Systems als Ausgangsgrofe des inversen
Systems aufgefasst.

B -

Doublet System

Abbildung 6: Blockschaltbild der Proper Inversion

Die Ubertragungsfunktion des Inverters lautet dann
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Es wird deutlich, dass die Nullstellen von G* den Polen von G entsprechen (unabhéngig
von der Groke von K) und dass die Pole von K abhingen: Fiir kleine K  beginnen®
die Pole von G* in den Polen von G; wenn K wéchst, ndhern sich die Pole von G* den
Nullstellen von G N(s)
. " s

Igl_r)nooG (s) = 705)
GI. 16 ist - streng genomimen - ein wenig irrefiihrend, da es so aussieht, als ob G* so viele
Pole hat wie G Nullstellen, was aber natiirlich nicht der Fall ist. Die Anzahl der Pole
eines Systems dndert sich durch die Riickfithrung nicht. Wenn G proper ist (n = Anzahl
der Pole > m = Anzahl der Nullstellen) muss es daher n — m Pole geben, die, wenn
K wiachst, nicht in die Nullstellen, sondern nach unendlich laufen. Diese zusétzlichen
Pole des inversen Systems machen das System automatisch proper und damit imple-
mentierbar. Thre Position kann direkt durch K gesteuert werden. Fiir das Beispiel aus
Abschnitt 4 ergibt sich

(16)

K K
G*(s) = =
(5) I+K-G(s) 1+K-5
s+1+K et

Wenn jetzt K beispielsweise auf 999 gesetzt wird, hat das inverse System (verglichen
mit Abschnitt 4)

999(s +1)  0.999(s + 1)
G*(s) = _ 18
() =57 T000 ~ 000541 (18)

die gleiche Nullstelle (—1), den gleichen hochfrequenten Pol (—1000) und eine marginal
unterschiedliche stationdre Verstdrkung (0.999 statt 1).

Wenn eine exakte stationdre Verstarkung wichtig ist, kann ein statisches Vorfilter Gp
mit

1 1+ K-G(0)
G(0)-G*(0) K -G(0)

mit dem Inverter in Reihe geschaltet werden.

Gp = (19)

Um die in Abb. 7 dargestellten Details korrekt zu simulieren, wurde das (fiir steife
Systeme geeignete) odel5s-Integrationsverfahren mit einer relativen Toleranzforderung
von le-6 verwendet.

Wieder muss ein Kompromiss gefunden werden, da hohe Verstarkungsfaktoren einer-
seits zwar den stationdren Fehler und den Einfluss der hochfrequenten Pole verringern,
andererseits aber die Bandbreite der Inversen vergréffern und damit dem Integrations-
algorithmus das Leben schwer machen.
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Abbildung 7: Ergebnis der Proper Inversion

6 MehrgrolRensysteme

Wenn das zu invertierende System mehr als eine Eingangs- bzw. Ausgangsgrofe besitzt,
wird seine Inversion deutlich komplizierter.
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6.1 Beispiel

Das folgende quadratische System mit zwei Eingangs-, zwei Ausgangs- und drei Zu-
standsgrofen soll in diesem Abschnitt als MIMO-Beispiel dienen

1 1 0 & o1 |
0 -1 1 ! 1

A I B .

. : SRR
0 1 0 i 0
0 0 1 : 0 |

MATLAB kann die Pole und (invarianten) Nullstellen des Systems berechnen

>> A =[-1, 1, 0; 0, -1, 1; -1, 0, -11;
> B =1[1, 0; 1, 0; 0, 1];

> C= [0, 1, 0; 0, 0, 1]1;

>> D = zeros (2,2);

>> G_ss = ss (A, B, C, D);

>> zero (G_ss)

>> pole (G_ss)
ans =
-2.0000

-0.5000 + 0.8660i
-0.5000 - 0.86601

Alle Pole und Nullstellen liegen in der linken komplexen Halbebene, so dass sowohl das
System als auch seine Inverse stabil sind.

6.2 Numerische Inversion

Der Versuch, das System numerisch via inv-Befehl zu invertieren, fithrt zu einer Fehler-
meldung
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>> G_star_ss = inv (G_ss)
??? Error using ==> ss/inv Cannot invert system with singular D
matrix.

Wie schon erwéhnt, verwendet MATLAB GI. 11 — 14, um ein in Zustandsraumdarstellung
gegebenes System zu invertieren. Gl. 11 versucht dabei, die Durchgangsmatrix D zu
invertieren, was im Beispiel bei einer Nullmatrix natiirlich nicht gelingt.

6.3 Analytische Inversion

Gliicklicherweise bietet MATLABs Symbolic Math Toolboz einen sehr eleganten Weg, das
System trotzdem zu invertieren. Dazu definiert man eine symbolische Laplace-Variable
und verwendet direkt die aus der Laplace-Transformation der Zustandsgleichungen ent-
standene allgemeine Ubertragungsmatrix

sX(s) = AX(s) + BU(s) (21)
X(s) = (sI— A)"'BU(s) (22)
Y (s) = CX(s) + DU(s)

= C(sI— A)"'BU(s) + DU(s) (23)
G(s) = Eg = C(sI- A)"'B+D. (24)

>> syms s
>> G_sym = simple (Cxinv (s*xeye (3, 3) - A)*B + D);
>> pretty (G_sym)

s +s+1 (s +2) (s +s + 1)]

s +s+1 (s +2) (s +8+ 1)]

| T e IO s T s T s Y s Y oy B |
N
[

Die analytische Inversion kann dann direkt mit dem symbolischen inv-Befehl erfolgen
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>> G_star_sym = inv (G_sym);
>> pretty (G_star_sym)

[s + 1 -1 ]
[ ]
[s + 2 s (s + 2)]
[-----  ——mm - ]
[s +1 s+ 1 ]

Zur Kontrolle kann gezeigt werden, dass das Produkt beider Matrizen die Einheitsmatrix
ergibt.

>> ident = simple (G_sym*G_star_sym)

ident =
[ 1, 0]
[ 0, 1]

Wie erwartet, sind einige der Ubertragungsfunktionen von G_star_sym nicht proper; die
Inverse kann daher nicht direkt implementiert werden. Abhilfe schafft auch hier wieder
ein schneller Tiefpass, der symbolisch definiert und mit dem System multipliziert wird.

>> T_filt_sym = le-3;

>> G_filt_sym = 1/(T_filt_sym*s + 1);

>> G_star_filt_sym = G_star_sym*G_filt_sym;
>> pretty (G_star_filt_sym)

[ s + 1 1 ]
[ - e ]
[ 1/1000 s + 1 1/1000 s + 1 ]
[ ]
[ s + 2 s (s +2) ]
I et i e ]

[(1/1000 s + 1) (s + 1) (1/1000 s + 1) (s + 1)]

Die in [6] zu findende sym2tf-Funktion wandelt die symbolische Ubertragungsmatrix
wieder in ihr numerisches Aquivalent, das sich direkt implementieren lisst.
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Abbildung 8: Blockschaltbild der proper Inversion im Zustandsraum

6.4 Proper MIMO Inversion

Die im Abschnitt 5 beschriebene Inversionsmethode kann, wie in Abb. 8 dargestellt, auch
im Mehrgrofenfall verwendet werden, um die Inverse ohne weiteren Berechnungsaufwand
zu simulieren.

Die algebraische Schleife, bestehend aus D, K und den beiden dufteren Additionsblécken
in Abb. 8, kann aufgebrochen werden

y* =K (u* — (Cx* + Dy")). (25)
Dies fiihrt zu der inversen Ausgangsgleichung
(I+KD)y* = Ku* — KCx*
y* = —(I+ KD) 'KCx* + (I+ KD) ' Ku*, (26)
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der Zustandsgleichung

x* = Ax* + By*
= Ax* +B (- (I+KD) 'KCx* + (I + KD) ' Ku*)
= (A-B(I+KD) 'KC)x*+B(I+KD) 'Ku* (27)

und zum inversen System
A* B*] [(A-B(I+KD) 'KC) B(I+KD) 'K (28)
C* D*| —(I+KD) 'KC I+KD) 'K

Zwei Figenschaften dieses inversen Systems sollen hier erwéhnt werden:

1. Wenn D vorhanden ist und K gegen unendlich lduft (wenn also wenigstens die
Diagonalelemente von KD sehr viel grofer als eins sind) kann die Einheitsmatrix
vernachlassigt werden, K kann  herausgekiirzt werden und die Matrixdefinitionen
entsprechen denen von Gl. 11 — 14; beispielsweise

lim D* = lim (I+KD) 'K

K—oo K—oo

= lim (KD) 'K = lim D 'K 'K=D" (29)

K—oo

2. Wenn das System strictly proper ist (D = 0), vereinfacht sich das inverse System
zu

{A* B*] _ {(A—BKC) BK (30)

C* D* —KC K

Im Vergleich mit G1. 11 — 14 sieht man, dass K die Funktion von D! iibernommen
hat; Grofte K-Matrizen haben den gleichen ,propernden” Effekt wie die kiinstliche
Addition kleiner Werte zur D-Matrix.

7 Inversion eines nichtlinearen Systems

Die analytische Inversion nichtlinearer dynamischer Systeme ist im Allgemeinen nicht
moglich. Schon die Losung eines scheinbar einfachen Problems wie des angeregten ma-
thematischen Pendels

i + sin(y) = wu, (31)

wobei y der Auslenkungwinkel und u der normierte Schub ist, fiihrt iiber elliptische Inte-
grale zu Jacobischen Funktionen [1], die nicht gerade das tégliche Brot eines Ingenieurs
darstellen.
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Abbildung 9: Blockschaltbild der Inversion eines nichtlinearen Systems

Auf der anderen Seite lisst sich die Simulation der Inversen des nichtlinearen Pen-
dels nach der im Abschnitt 5 beschriebenen Methode problemlos durchfiihren. Die in
Abb. 9 verwendete extrem hohe Verstiarkung von 1lel2 erreicht eine in Abb. 10 darge-
stellte nahezu perfekte Rekonstruktion der Eingangsdoublette. Dabei wurde der odel5s-
Integrationsalgorithmus verwendet und alle seine Parameter (maz step size, ..., absolute
tolerance) auf auto gesetzt.

8 Anwendungen

Im Rahmen des MoU wurden zur Turbulenzmodell-Identifikation beide Inversionsver-
fahren (,Analytische Inversion* nach Abschnitt 6.3 und ,Proper Inversion“ nach Ab-
schnitt 6.4) erfolgreich auf drei verschiedene lineare Helikoptermodelle (UH-60 der NASA
in Ames und Bo-105 und EC-135 des DLR in Braunschweig) und reale Flugversuchs-
daten angewandt [3] und [6]. Bei der UH-60 wurde ein Modell mit 41 Zustandsgrofsen
(inklusive Rotor- und Stellerdynamik), 4 Eingangsgroken (lateraler und longitudinaler
Stick, Pedal und Kollektiv) und 4 Ausgangsgroben (Rollrate, Nickrate, Gierrate und
Vertikalgeschwindigkeit) verwendet, die DLR-Modelle besitzen die gleichen Ein- und
Ausgangsgrofen aber 8 (Bo-105) bzw. 10 (EC-135) Zustandsgrofen.

Hubschraubertypisch besitzen alle Modelle relativ langsame instabile Pole, so dass eine
Simulation der Modelle auch mit einer Inversen, die versucht, alle Pole durch entspre-
chende Nullstellen zu kompensieren, aus numerischen Griinden nur fiir einen begrenzten
Zeitraum stabil durchgefiihrt werden kann [6]. Erschwerend kommt hinzu, dass beim
UH-60-Modell vier Nullstellen in der rechten Halbebene liegen, so dass die entsprechende
Inverse zwei instabile Polpaare besitzt. Da die Nullstellen aber aufserhalb des Nutzfre-
quenzbereichs des Hubschraubers liegen, ldsst sich ihre Auswirkung durch eine in [5] und
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Abbildung 10: Ergebnis der Inversion eines nichtlinearen Systems

[6] beschriebene Spiegelung mit Hilfe eines Allpasses in eine fiir Offline-Anwendungen
unkritische Totzeit umwandeln.
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