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Kapitel 1

Einfiihrung

1.1 Blockschaltbilder und Bezeichnungen

1.1.1 Normen

DIN 19221 Regelungstechnik und Steuerungstechnik
DIN 19225 Benennung und Einteilung von Reglern
DIN 19226 Regelungstechnik und Steuerungstechnik

VDI/VDE 3526 Benennungen fiir Steuer- und Regelschaltungen

1.1.2 Signalverkniipfungen

u, v
— —
u v, u, v
. > —_
v, uﬁ U,
(a) Verzweigungspunkt: (b) Additions- bzw. (¢) Multiplikationsstelle:
V] =V =U Subtraktionsstelle: V= 1U1 - U

V=Up — U2

Abbildung 1.1: Signalverkiipfungen
1.1.3 Blocke

u(t) v(t)

vIi+v=u

Abbildung 1.2: Differenzialgleichung
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u(t) K v(t)

Abbildung 1.3: Sprungantwort (Ubergangsfunktion)

U(s) 1 V(s)
———> G(s)= e
Ts+1

Abbildung 1.4: Ubertragungsfunktion

1.1.4 Bezeichnungen

U Eingangsgrofie Input variable

v Ausgangsgrofie Output variable

w FithrungsgroBe (Sollwert) Reference input variable, command, set

value
x Regelgrofie (Istwert) Control(led) variable
. Regeldifferenz (Regelfehler, Error signal, control error, control
Regelabweichung) difference, deviation
Y Stellgrofie Correcting variable, manipulating variable
z Storgrofie Disturbance

s Laplace-Variable, Bildvariable, Complex frequenc
komplexe Frequenz p q Yy

G (s) Ubertragungsfunktion Transfer function

Tabelle 1.1: Deutsche und englische Bezeichnungen der Regelungstechnik
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1.2 Steuerung und Regelung

1.2.1 Steuerung

-V 5 Steuerung —y> Strecke

Abbildung 1.5: Steuerung

® Offene Wirkungskette, keine Riickfithrung
® Kann nur bekannte Storungen kompensieren

® Kann nicht instabil werden

® Schnell

1.2.2 Regelung

—_ — Regler _y} Strecke

—

Abbildung 1.6: Regelung

® Geschlossener Regelkreis
® Kann auch unbekannte Storungen ausregeln
® Kann instabil werden

® Langsamer

16



1.3 Spezielle Anregungsfunktionen und Systemant-

worten

1.3.1 Sprung

1 furt >0
s(t)=405 firt=0
0 furt <0

1.3.2 Rampe

t furt>0
r(t) = .
0 furt<0

1.3.3 Rechteckimpuls

0  sonst

/e {0 <t <
d(t):{/ uro<t<e

17

s(t)T
1
0.5*

t

Abbildung 1.7: Einheitssprung

A
r(t)
1

»
>»>

1 t
Abbildung 1.8: Einheitsrampe

\/

Abbildung 1.9: Rechteckimpuls



1.3.4 Idealer Impuls (Dirac-Stof})

o(t)

{oo furt =20 A=1

d(t) =limd(t) 0 somst

e—0

v

t

Abbildung 1.10: Idealer Impuls
(Dirac-Stof})

1.3.5 Sinus

1
z (t) = sinwt />t
\ /2
w

-H

Abbildung 1.11: Einheitssinus

1.3.6 Beziehung zwischen Rampe, Sprung und Impuls

X2l Xl
ot ot
r(t) s (t) 0 (t)
— —
Jdt Jdt
1.3.7 Systemantworten

JﬁL» ﬁL» Rampenantwort
iL» System ﬂL» Sprungantwort (Ubergangsfunktion)
JEL» —&L> Impulsantwort (Gewichtsfunktion)

Abbildung 1.12: Systemantworten
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1.4 Statisches und dynamisches Verhalten

u(t) v(t)
— System —

Abbildung 1.13: Allgemeines (statisches oder dynamisches) System

1.4.1 Statisches Verhalten (statische Kennlinie)

® Beispiel: idealer Messverstarker
® Verdnderung der Ausgangsgrofie nur, wenn sich die Eingangsgrofie gerade andert
® Keine Energiespeicher — keine Eigenbewegung (Eigendynamik)

® Beschreibung durch algebraische Gleichungen

1.4.2 Dynamisches Verhalten
® Beispiel: Pendel
® Verdnderung der Ausgangsgrofle, ohne dass sich die Eingangsgrofie gerade dndert
® Interne Energiespeicher werden ge- und entladen — Eigenbewegung (Eigendynamik)

® Beschreibung durch Differenzialgleichungen

A v A
u(t) v(t) ®
t t u,”
(a) Schar von Sprungein- (b) Schar von Sprungant- (c) Stationdre (statische)
gdngen worten nichtlineare Kennlinie

Abbildung 1.14: Dynamisches Verhalten

1.5 Lineares und nichtlineares Verhalten

Lineare Systeme sind in vieler Hinsicht angenehmer als nichtlineare Systeme. Sie lassen
sich im allgemeinen wesentlich einfacher analysieren, regeln und simulieren. Zur Uberprii-
fung, ob ein allgemeines nichtlineares System der Form v = g (u) linear ist, werden zwei
Linearitdtsbedingungen herangezogen, die beide erfiillt sein miissen:

19



K Lineares g(K-u)

u -u
) K System g( )
. K.
u Lineares g(u) K g(w)

System g( )

Abbildung 1.15: Verstarkungsprinzip: g (K - u) K- g (u)

u,

1 Uty Lineares g(u,+uy)
System g( )
LT

u, Lineares g(u))

System g( )
g(u) +gu)
u, Lineares g(u,)
—

System g( )

\/

!

Abbildung 1.16: Uberlagerungsprinzip: g (u; + u2) = g (u1) + g (uz)

X ,Wenn’s fiir eine Eingangsamplitude klappt, klappt’s immer.*
X Reihenfolge linearer Blécke vertauschbar: g (h (u)) = h (g (u))

1.5.1 Lineare Blocke

® Integrator

® Differenzierer

® Verstarker (Konstante)

® Summe

® Totzeit

® Zusammengesetzte Blocke: P-Ty, P-Ty, PD-T;-Filter, PID-Regler, ...
® Allgemeine Ubertragungsfunktion

® Lineare Zustandsraumdarstellung

20



Kapitel 2

Lineare Systeme

2.1 Mechanischer Schwinger zweiter Ordnung

Abbildung 2.2: Freigeschnittener Schwinger zweiter Ordnung

Lineare inhomogene Differenzialgleichung zweiter Ordnung:

mio—+rv+co=F

Normalform:

SRl

.. . C
V+ —Uv+ —v =
m m

21



Allgemeines System zweiter Ordnung:

& 4+ 2Dwod + wiv = Kwiu

Eingangsgrofie:
u=F
Eigenkreisfrequenz:
s C [c
m m
Démpfung:
r r r r
o m 2mwy  29m £ 2 /cm
Verstarkungsfaktor:
1 1 1 1
Kuwl=— = K= 5= —Q0 = —
m mwy o Mma
u(t) . -, ) v(t)
—_—> v +2Do,v + o;v = Koju —>

Abbildung 2.3: Blockschaltbild Schwinger zweiter Ordnung

2.1.1 Impulsantwort

Impuls als Eingangsgrofie: u (t) = § (¢)

A
gt g(t)
D=0.1 D=1
VAN ’
(a) D=0.1 (b) D=1

Abbildung 2.4: Impulsantwort g (¢)

22



2.1.2 Sprungantwort

Sprung als Eingangsgrofie: u (t) = s (t)

A — A
AN (} h®| D=1
t > t >
(a) D=0.1 (b) D=1

Abbildung 2.5: Sprungantwort h (%)

2.2 Laplace-Transformation (eines P-T5)

Differenzialgleichung;:

¥+ 2Dwod + wiv = Kwiu

Anfangswerte gleich null:

v(0) =0(0)=0
u(t) B v(t)
U(s) GGs) V(s) = G(s)-U(s) :

Abbildung 2.6: Losung einer Differenzialgleichung mittels Laplace-Transformation

Laplace-Transformation:

® der Eingangsfunktion: £{u (t)} = U (s)

® der Ausgangsfunktion: £{v (t)} =V (s)

® der ersten Ableitung der Ausgangsfunktion: £{0 (t)} = s-V (s)

® der zweiten Ableitung der Ausgangsfunktion: £ {9 (t)} = s* -V (s)

23



Transformierte Differenzialgleichung:
sV (s) + 2DwysV () + wiV (s) = KwiU (s)
Ubertragungsfunktion:

V (s) Kuw?
U(s) 824 2Dwys + w?

(1) 1
s(t)=1 L
r(t)y=t 5
o—at L
e~ % sin wt m
e " coswt (HZ)%

Tabelle 2.1: Die wichtigsten Laplace-Transformationen

2.2.2 Beispiel: Sprungantwort eines P-T

Ubertragungsfunktion:
Gls)=— (=1, K=1,D=05)
VTRl TR TRET
Sprung:
L{st)} =5(s) = -
Sprungantwort:
1 1
H(s)=G S (s) = .=
(5) = Gl) S (5) = 5
Partialbruchzerlegung:
As+ B C
H( ) - 3 e
s*+s+1 s



Gleiche Nenner:

1 (As+ B)s+C(s*+s+1)

(s24+s+1)s (s24+s+1)s

Koeftizientenvergleich im Zahler:

$: 1=C = C=1
st: 0=B+C=B+1 = B=-1
2 0=A+C=A+1 = A=-1

Resultat der Partialbruchzerlegung:

1 s+1
H(s) = =
() s s24+s+1
Quadratische Erganzung:
1 s+1 1 s+1

H - _ _ - _ __
= (s+2)+1-1 5 (s+1) +3

Vergleich mit Laplace-Transformationstabelle (Tabelle 2.1):

a1 w_f_ﬁ
) V4 2

Zéhler durch Aufspaltung an Tabelle anpassen:

1 s+ 1 :
H(S):E_ 122 5 122 3
(S+§) +Z (S+§) +Z
Dritten Summanden auch an Tabelle anpassen:
1 /3 /4
1 543 3V1V3

Sprungantwort im Zeitbereich:

h(t) = £ {H(s)} =1- efétcos —t— —e 2'sin it

B
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Periodendauer:

>»>

h(t) 4

1.0 /N

0.5-

0.0 T \ T T T »
0 2 4 6 8 10 t

Abbildung 2.7: Sprungantwort eines Systems zweiter Ordnung (D = 0.5)

2.3 Grenzwertsatze

Anfangswertsatz:

f(t:O):limf(t):lioos-F(s)

t—0 s—

Endwertsatz:

lim f(¢t) =lims- F(s)

t—00 s—0

2.3.1 Beispiel: Sprungantwort eines P-T,

Allgemein (Endwertsatz):

lim A (t) :liir(l)&H(s) zlims-G(s)-lzlimG(s)

t—00 s—0 S s—0

Speziell (P-Ts):

Kuw? Kuw?
lim A () = lim G (s) = lim | — =0

= =K
t—00 s—0 s—0 82 + 2Dw08 + W(Q) w(z)

26



2.4 Pole der Ubertragungsfunktion

Beispiel: System zweiter Ordnung (P-T5)
Ubertragungsfunktion:

Kuw?
s2 + 2Dwps + Wi

G(s) =

Pole sind Nullstellen des Nenners:

s% 4+ 2Dwps + wi =0

Zwei (reelle oder konjugiert komplexe) Pole:

S12 = —Dwp \/m = —Dwg wyvD? -1

Fallunterscheidung:
|ID| >1  s12=—DwytwyvD?—1 Zwei reelle Pole
|D| <1 8172:—DCU0:{:J.(4}0\/1—D2
— T Konjugiert komplexes Polpaar

D=0 51,2 = Ejwy Konjugiert komplexes Polpaar auf der
imagindren Achse

D=1 S1,2 = —Wo Reeller Doppelpol in der linken
Halbebene

D=-1 s12=uw Reeller Doppelpol in der rechten

Halbebene (instabil)

Tabelle 2.2: Lage der Pole in Abhéngigkeit von der Dampfung

jcoT (s) X D<0
T D=0
S b D<1
/ X\ X D=1
Gé & \ X D>1
XK } >
)
\\\ //'
. X
stabil instabil

Abbildung 2.8: Polverteilung eines Systems zweiter Ordnung
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Stabilitdat: ,Ein System mit mindestens einem Pol in der rechten Halbebene ist instabil.“

Eigenfrequenz ist Abstand vom Ursprung:

2
o> + w? = |—Duwy|* + (wovl — Dz) = D%} + W} (1 - D2> =Wl

,Je naher am Ursprung, desto langsamer.”
Zusammenhang zwischen Winkel £ und Dédmpfung D (im zweiten Quadranten):
|O" . DWO

sine = —
Wo Wo

=D

,Je nidher an der imagindren Achse, desto schlechter gedampft*

2.5 Frequenzgang

Sinusanregung:

u(t) = Ay sinwt

u(t) =A, sin(ot) . v(t) = A, sin(ot + ¢)
» Lineares System >

Abbildung 2.9: Sinusanregung und -antwort eines linearen Systems

Stationére Sinusantwort (Einschwingvorgang abgeschlossen) hat:

® Gleiche Frequenz w
® Andere Amplitude A,

® Andere Phase (Phasenverschiebung )

A
A u(t)
RIZN o

\ /.

Lok /7

Abbildung 2.10: Sinusanregung und -antwort eines linearen Systems
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Der Frequenzgang setzt sich aus dem Amplitudengang (Verhéltnis von Aus- zu Eingangs-
amplitude tber der Frequenz) und dem Phasengang (Phasenverschiebung in Abhangigkeit
von der Frequenz) zusammen:

A

A,
AU
\w>
Abbildung 2.11: Amplitudengang
¢ A

\ 4

Abbildung 2.12: Phasengang

2.6 Bodediagramm und Nyquistortskurve

2.6.1 Eigenschaften komplexer Zahlen

Komplexe Zahl in arithmetischer Darstellungsform:

z=a-+jb

Komplexe Zahl in exponentieller Darstellungsform:

z=r-¥

29



>

j-Im(z)1

j’b z

»

a Re(z)

Abbildung 2.13: Punktdarstellung der komplexen Zahl z

Betrag:
|z| = r =Va® + b?
Phase:
9
p = arctan | —
a
Realteil:
R(z)=a=r-cos(p)

Imaginéarteil:

S (2) =b=r-sin(p)
Quotient zweier komplexer Zahlen:

ry - elet _a+jb
re-el?2 ¢+ jd

2Q =
Betrag ist gleich dem Quotienten der Einzelbetrage:

|Z |_E_ */CLQ—I—bQ
N re A+ d?

Phase ist gleich der Differenz der Einzelphasen:

b d
pQ = 1 — P2 = arctan () — arctan <>
a C

Real- und Imaginarteil ergeben sich nach konjugiert komplexem Erweitern:

a+jb a+jb c—jd ac—ajd+jbc—jbjd ac+bd+ j(bc — ad)

2Q ct+jd  c+ijd c—jd  cc—cjd+jdc—jdid 2 + 2

Realteil:

30



Imaginérteil:

B ac + bd
c2 4 d?

bc — ad

SE)=Gre

2.6.2 Logarithmische Skalierung (Dezibel)

Amplitudengang Doppelt-logarithmische Skalierung: logarithmische Frequenz und Am-
plitude in Dezibel

Phasengang

Umrechnung Dezibel:

o A— 1052

Einfach-logarithmische Skalierung: nur logarithmische Frequenz

AldB] 0 20

-40 80 6 3

—00

A 1 10

0.01 10000 ~2 ~+2 0

Tabelle 2.3: Einige Umrechnungsbeispiele

2.6.3 Beispiel: System zweiter Ordnung (P-T,)

Ubertragungsfunktion:

Frequenzgang:

G (jw) =

0.1
G(s) s24+s+1
0.1
(jw)* +jw + 1
0.1
—_ 2.2
(1 —w?) +jw (2:2)
0.1 (1—w?) —jw
T e (=) o
. pa— 2 pa— 1
0.1-(1 —w® —jw) (2.3)

(1-— w2)2 + w?
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Aus Gleichung (2.2) folgen der Amplitudengang und der Phasengang:
Amplitudengang:

0.1
\/(1 — w2)2 + w?

A(jw) = |G (jw)| =

Phasengang:

¢ (w) = —arctan <1 d )

— w2

dB 1 10 100

(e}
\/

-100

Amplitudengang

¢ 4
OO

>

A\

-90°

-180°
Phasengang

Abbildung 2.14: Bodediagramm: Amplitudengang in Dezibel und Phasengang iiber loga-
rithmischer Frequenz

Aus Gleichung (2.3) folgen der Realteil und der Imaginarteil:

Realteil:
) 0.1(1 — w2)
(G =
( (-] )) (1 w2)2+w2
Imaginéarteil:
—0.1w
(G = =



4 jm(o)

W= o 0.1
¢ w=0| ReG)

0.1

Abbildung 2.15: Nyquistortskurve: Imaginérteil iiber Realteil des Frequenzganges mit
Frequenz als Parameter der Kurve

2.7 P-Glied

Andere Bezeichnungen: P-Regler, Verstéirker
Beispiel: (Idealer) Audio-Verstarker

,Differenzialgleichung® im Zeitbereich:

v(t) =K -ul(t)

,Differenzialgleichung® im Bildbereich:

Vi(s)=K-U/(s)

Ubertragungsfunktion:
V(s)

G(s) = =K
Pole: keine
Nullstellen: keine
Frequenzgang:

G(jw) =K

Amplitudengang:



Phasengang:

p=0
A
K
(L)>
¢A j-Im(G)T K @
Re(G)
w'
(a) Bodediagramm (b) Nyquistortskurve

Abbildung 2.16: Bodediagramm und Nyquistortskurve eines P-Glieds

Sprungantwort im Bildbereich:

1 1
H (s) :G(s)-ﬁ{s(t)}:G(s)-;:K-;
Sprungantwort im Zeitbereich (vergleiche Tabelle 2.1):
1
h(t)= £ {H (s)} = £ {K - } _ K
s
ho) A
K
_uw K v
—>
(a) Sprungantwort (b) Blockschaltbild
Abbildung 2.17: Sprungantwort und Blockschaltbild eines P-Glieds
2.8 P-T,

Andere Bezeichnungen: Tiefpass 1. Ordnung, Verzogerungsglied 1. Ordnung

Beispiel: Aufladung eines Kondensators C tiber einen Widerstand R
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R
U C
Y’ 1

Abbildung 2.18: Beispiel fiir ein P-T;

! = o

Differenzialgleichung im Zeitbereich:

To(t) + v (t) = K -u(t)

Differenzialgleichung im Bildbereich:

Vi(s)-(Ts+1)=K-U/(s)

Ubertragungsfunktion:

Pole:

Nullstellen: keine

ﬂm@T ©
) X_l ‘ Re(s)>
T

Abbildung 2.19: Pole (und Nullstellen) eines (stabilen) P-T4

Frequenzgang:
K
G (jw) =
) = o1
Amplitudengang:
) K
Afw) = 16 ()] = ——
(WI)”+1
Phasengang:

¢ (w) = —arctanwT'
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A A -20dB/Dekade

S
o,
o
= [=
\4

00

\4

450
-90°

Abbildung 2.20: Bodediagramm eines P-T mit Eckfrequenz w, = 1/7

A
Im(G) ©

Abbildung 2.21: Nyquistortskurve eines P-T;

Sprungantwort im Bildbereich:

1 K 1 K KT K K
H(s)=G(s)-— = .. —...PBZ..- = —
(5)=G(s) S =701 3

Sprungantwort im Zeitbereich (vergleiche Tabelle 2.1):

h(t)=L'{H(s)} =K —-KeT=K(1-eT)

A
h(t
) ho T<0
Kl T
0.63K K(l-e)] t
- -1.7K
T t
(a) Stabil (b) Instabil

Abbildung 2.22: Sprungantwort eines P-T}
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Abbildung 2.23: Blockschaltbild eines P-T;

2.9 P-T,

Andere Bezeichnungen: Tiefpass 2. Ordnung, Verzogerungsglied 2. Ordnung, Schwinger
2. Ordnung

Beispiel: Feder-Masse-Schwinger (Abschnitt 2.1)
Differenzialgleichung im Zeitbereich:

0 (t) + 2Dwod (t) + wiv (t) = Kwiu (1)
Differenzialgleichung im Bildbereich:

V(s) - (52 + 2Dwys + wg) = KwiU (s)
Ubertragungsfunktion:

V(s) Kuw?
U(s)  s%+2Dwys + wi

Pole: vergleiche Abschnitt 2.4

Nullstellen: keine

Frequenzgang:
Kuw?
G (jw) = 0
() (wg — w?) + 2Dwow]
Amplitudengang:
. Kuw?
Aw) =G ()] = 0 :
\/(wg — w?)” + (2Dww)
Phasengang:
2 Dwow
= —arct
¢ (w) arctan <W(2) — oﬂ)
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— D=0
— D=0.2
— D=0.3
— D=05
D=0.7
D=
— D=2
@
10w,
K -
40 dB
N
0° 4 o>
-90°
-180°

Abbildung 2.24: Bodediagramm eines P-T5 bei unterschiedlichen Dampfungen
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A —D=02 D=07 (g
Jm@ - poo3 D=
— D=05 —— D=2

Abbildung 2.25: Nyquistortskurve eines P-Ty bei unterschiedlichen Démpfungen
Sprungantwort (vergleiche Gleichung (2.1)):

W) = K (1 Dt <cos (VI~ Dt + mwot)>>

D .
\/ﬁSIH(
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A
h(t) — D=02 D=0.7

D=03 D=
——D=05 — D=2
K /N AN
\ ‘_(‘

»
>»>

t

Abbildung 2.26: Sprungantwort eines P-T5y bei unterschiedlichen Dampfungen

Abbildung 2.27: Blockschaltbild eines P-T,

2.10 I-Glied

Andere Bezeichnungen: Integrator, Energiespeicher

u%

Abbildung 2.28: Beispiel fir ein I-Glied

Beispiel: Wasserstand in einem Behélter

Integralgleichung im Zeitbereich:

Differenzialgleichung im Bildbereich:
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Pole:

Nullstellen: keine

Abbildung 2.29: Pole (und Nullstellen) eines I-Gliedes

Frequenzgang:
1 1 1 x
G ] pr— pum— —. pum— _‘]E
() Trjw Wl wTIe
Amplitudengang:
A) =16 ()] = —
w)] = w = —_—
] (,UT[
Phasengang:

¢ (w) = arctan %T = —arctanoco = —

2
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A
A
-20 dB/Dek
0dB >
i w
T,
A
i Im(G) ©
A
0]
A >
0° > Re(G)
w ()]
-90°

(a) Bodediagramm (b) Nyquistortskurve

Abbildung 2.30: Bodediagramm und Nyquistortskurve eines I-Glieds

Sprungantwort im Bildbereich:

Sprungantwort im Zeitbereich:

h(t)_c—l{ms)}_c—l{ ! }_t_lt

T[ 82 T[ T]
A
h(t)
1
u T, v
— —
T, t
(a) Sprungantwort (b) Blockschaltbild

Abbildung 2.31: Sprungantwort und Blockschaltbild eines I-Glieds

2.11 D-Glied

Andere Bezeichnungen: Differenzierer

Beispiel: Drehwinkel der Tachonadel ist die Ableitung des Radwinkels:

PTacho = @Rad
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@ (PRad Tacho (PTacho {3

Abbildung 2.32: Beispiel fir ein D-Glied

Differenzialgleichung im Zeitbereich:

v (t) = Tpa (t)

Differenzialgleichung im Bildbereich:

V(s) =TpsU (s)

Ubertragungsfunktion:
V(s)
G = =T
W) T
Pole: keine
Nullstellen:

Tps=0 = s1=20

Abbildung 2.33: (Pole und) Nullstellen eines D-Gliedes

Frequenzgang:
G (jw) = jwTp = wlpe'>
Amplitudengang:
Aw) = [G(jw)| = wTp
Phasengang:

w T
o(w) = arctan —2 = arctan co = B)
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A
A
20 dB/Dek
0dB /1 (JL)?
T,
0 jIm(G) ©
¢ A w
90° Re(G)
0° o>
(a) Bodediagramm (b) Nyquistortskurve

Abbildung 2.34: Bodediagramm und Nyquistortskurve eines D-Glieds

Sprungantwort im Bildbereich:

1 1
H(S) :G(S);:TDSEITD

Sprungantwort im Zeitbereich (vergleiche Tabelle 2.1):

h(t)=L'{H(s)} =L {Tp} =Tpé(t) (Dirac-StoB)

h(t)
A
4 u v
_ [T, —F—
t'
(a) Sprungantwort (b) Blockschaltbild

Abbildung 2.35: Sprungantwort und Blockschaltbild eines D-Glieds

2.12 PID-Glied

Andere Bezeichnungen: PID-Regler
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u T, v
. . i —_— —>
A

L » TD —

Abbildung 2.36: Parallelschaltung von P-Glied, I-Glied und D-Glied

Ubertragungsfunktion:

mit:

G (s)

mit:

1 KT[S + 1 + TDT182
(s) + Tos +Tps Ts

T
T, = ?N wnd  Tp =Ty K

KI¥s+ 1+ Ty KIxs* o Ivs +1+TVTns® _ (

1
14+ —+1T;
T?NS TNS + + VS)

TNS

Tn: Nachstellzeit und 7Ty : Vorhaltzeit

Abbildung 2.37: Geratenahe Darstellung eines PID-Gliedes
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Pole:

S1 = 0
Nullstellen:
T’\/T’]\[S2 +Tys+1=0 = s = $1,2 = WE; »
o ®
Wy W °
Abbildung 2.38: Pole und Nullstellen eines PID-Gliedes
Frequenzgang:
G (jw) = K + +'T—K+<_1+ T)'
w) = T Jwip = T wWip|]

Schnittpunkt mit der 0-Grad-Achse:

—1 1
p=0 = Im=0 = —+wWlp=0 = —=ulp =
Wy wTh

1 1 1
wm: = =
\ 7 - Tp v K\ Ty Ty
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A
A
-20 dB/Dek 20 dB/Dek
C‘)1‘51 1 i Ol)Ez ®
T, | Tp
® A
90°
0° >
O, ®
-90°
(a) Bodediagramm (b) Nyquistortskurve
Abbildung 2.39: Bodediagramm und Nyquistortskurve eines PID-Glieds
h A
t
® Steigung
2K 1_K
K T Ty u KT, T, v
-Ty Ty t
(a) Sprungantwort (b) Blockschaltbild

Abbildung 2.40: Sprungantwort und Blockschaltbild eines PID-Glieds

2.13 Totzeit

Andere Bezeichnungen: Laufzeit

Beispiel: Forderband

0.~ O

Abbildung 2.41: Forderband als Beispiel fiir eine Totzeit
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Ubertragungsfunktion:

Pole: keine
Nullstellen: keine

Frequenzgang:

Amplitudengang:

Phasengang:

\/

iG] ©

(1 =0

-57°) W \ 1 ReG)
W

(a) Bodediagramm (b) Nyquistortskurve

—ﬁl"

\/

Abbildung 2.42: Bodediagramm und Nyquistortskurve einer Totzeit

A
h(t)
1 T
u T \
T; t
(a) Sprungantwort (b) Blockschaltbild

Abbildung 2.43: Sprungantwort und Blockschaltbild einer Totzeit
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2.14 Zustandsraumdarstellung
Differenzialgleichung eines Systems zweiter Ordnung;:

b + 2Dwod + wiv = Kwiu

Einfithrung von 2 Zustandsvariablen:

1 =v (Weg)

zy =0 (Geschwindigkeit)
1. Differenzialgleichung;:

i’lzl'g

2. Differenzialgleichung:
To + 2Dwoxs + ngl = ngu
Lo = —W§$1 — 2Dwozs + ngu
Matrixschreibweise:

[tl . 0 1 T + 0 u
.fi'Q N —wg —2DUJO i) ng

~—
A B=b

Vektordifferenzialgleichung im Zustandsraum:

t=A-xz+B-u
Vektorausgangsgleichung:

v=C-z+D-u

Ausgangsgleichung in expliziter Form:

v=1[1 0 lij+\of]/u

C=cT D=d
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2.14.1 Blockschaltbild der Zustandsraumdarstellung

v ,1 Integrator pro Zustand*
v ,Zustandsgroffe am Ausgang des Integrators®

v ,Differenzialgleichung am Eingang des Integrators modellieren*

u 5 X, X, X, X,
—> Koy —™» ——™™ ——> ——> ——>
A- -
2Dw, <«—
2
0, <

Abbildung 2.44: Blockschaltbild eines Schwingers zweiter Ordnung
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Kapitel 3

Reglerauslegung

3.1 Stabilitat

3.1.1 BIBO-Stabilitit (Bounded Input Bounded Output)

,Stabil, wenn ein begrenztes Eingangssinal zu einem begrenzten Ausgangssignal fithrt*

Beispiel: Sprungantwort eines Integrators

T h(t)

s(t)

»
>

| t

Abbildung 3.1: Sprungantwort eines Integrators

Ergebnis: Integrator ist nicht stabil.

3.1.2 Asymptotische Stabilitat

® Stabil, wenn die Impulsantwort asymptotisch auf Null abklingt
® [nstabil, wenn die Impulsantwort gegen unendlich geht

® Grenzstabil, wenn die Impulsantwort einen endlichen Wert nicht iiberschreitet
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Beispiel: Impulsantwort eines Integrators

A
3() g(t)

»
'

t

Abbildung 3.2: Impulsantwort eines Integrators

Ergebnis: Integrator ist grenzstabil.

Beispiel: Impulsantwort eines doppelten Integrators

A

3(t)
g(t)

»
>

! t
Abbildung 3.3: Impulsantwort eines doppelten Integrators

Ergebnis: Doppelter Integrator ist instabil.

3.1.3 Grundlegendes Stabilitatskriterium

® Stabil, wenn die Ubertragungsfunktion nur Pole in der linken Halbebene besitzt

® [nstabil, wenn mindestens ein Pol in der rechten Halbebene liegt oder wenn min-
destens ein mehrfacher Pol auf der Imaginédrachse liegt

® Grenzstabil, wenn kein Pol in der rechten Halbebene liegt, keine mehrfachen Pole
auf der Imagindrachse vorhanden sind, sich aber mindestens ein einfacher Pol auf
der Imaginédrachse befindet

Beispiel: Allgemeines System zweiter Ordnung

1
Gs)=————"— = = ...
() s+ ais+ ag 51,2
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j@

(a) Stabil, nicht
schwingfahig

j ®

(e) Stabil,
schwingfihig

;
# ®

(b) Instabil,
nicht schwing-
fahig

J(O@

(o)

5

() Instabil,
schwingfihig

#ﬁ,
Instabil,

mcht schwing-
fahig

) Grenzstabil,

ungedampfter
Schwinger

j®
O
o

(d) Instabil,
doppelter
Integrator

jo®
v ®
c

(h) Grenzstabil,
verzogerter In-
tegrator

Abbildung 3.4: Polverteilungen von stabilen und instabilen Systemen

3.2 Regelkreis

Abbildung 3.5: Allgemeiner Regelkreis

,Vom Ausgang riickwarts bis zu allen Eingéngen, bzw. bis zu der Ausgangsgrofie selbst*:

r=Gs-y=Gs-Gr-e=Gs-Gr-(w—r)=Gs-Gr- (w— Gy - 1)
Sortieren:
17‘(1 +'(;S 'C;R '(;Ai) ZZ(;S '(;R s w
Gesamtiibertragungsfunktion:

g w 1+ Gs-Gr- -Gy 1+ Gy

Vorwartstibertragungsfunktion:
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Gy =Gg-Gg

Ubertragungsfunktion des offenen Kreises:

Go=Gs-Gr-Gpy

3.2.1 Beispiel

W Ki 1 X
—_— > —_ >
- L 10s+1

1
s+ 1 h

Abbildung 3.6: Beispiel eines einfachen Regelkreises

Gesamtiibertragungsfunktion:

o — Gy _ Kg - 1051+1 _ Kr(s+1)
Y 1+Gy 14+ Kp g5 (10s+1)(s+1)+ Kpg
Pole:
10s>+10s+s+1+Kp=0
Normalform:
11 1+ Kpg
2
it -0
ST

Zwei (reelle oder konjugiert komplexe) Pole:

11 \/(11)2 1+ Kp
S12=—5- £ snl —
: 20 20 10

Fiir die spezielle Reglerverstarkung Kr = 1:

11 (11)2 2
S12=—55 £ snl T TA
' 20 20 10

ergeben sich zwei reelle (stabile) Pole:
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sy =—0.2 und sy=-—0.87

Fiir die spezielle Reglerverstarkung Kr = 10:

11 <11)2 11
S12=—55 £ snl 1A
’ 20 20 10

ergeben sich zwei konjugiert komplexe (stabile) Pole:

S12 = —0.55 £+ 089J

joo ®

Ke=10x | L0
stabil

K, =1 0.2

087 -021 9

Abbildung 3.7: Pole eines einfachen Regelkreises in Abhéngigkeit von der Reglerverstér-
kung

3.3 Nyquistkriterium

Voriiberlegung:

——» Mikro —» Verstarker —> Box

“Riickkopplung” ?

Abbildung 3.8: Wann wird der akustische Kreis instabil?

Riickkopplung nur, wenn:

1. Verstarkung grofl genug (> 1) und

2. Mitkopplung vorhanden (Phasenverschiebung = n - 27)
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Regelkreis:

Abbildung 3.9: Allgemeiner Regelkreis

Ubertragungsfunktion des offenen Kreises:

Go=Gr-Gs-Gu

Kritischer Punkt:

A=1|Gy|=1 und ¢=~LGy=—7

3.3.1 Beispiel

P-Regler
Gr=Kpg
P-Ty-Strecke:
0.1
G
ST 2541
P-T-Messglied:
1
Gy =
M= 01s+1
—_—> —» Ky —> 5 0.1 R
- sTts+1
1
0.1s+1

Abbildung 3.10: Blockschaltbild eines Regelkreises mit P-Regler, P-Ts-Strecke und P-T;-
Messglied
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Offener Kreis:

0.1 1
s24+s+1 01s+1

Go=Gr-Gs-Gy = Kp-

>

Ad 4

0 1 10 100 1000 -
A G,
-20 Kg 1il= 40 dB
-40
-60 N
80 ANt
-100 \
_ 120 GO (KR = 1)
O A
OO ;
GM
90°
G
-180°
270°

Abbildung 3.11: Bodediagramm des offenen Kreises (Gy)

Bis 0 dB hochschieben (Amplitudenreserve):

Kpg,,,, = 40dB =100 (geschlossener Kreis grenzstabil)
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A .
Kp =100 | | JIm(Gy)

kritischer
Punkt

0.1

Abbildung 3.12: Nyquistortskurve des offenen Kreises (Gy)

Vereinfachtes Nyquistkriterium an der Nyquistortskurve des offenen Kreises: ,Kritischer
Punkt (-1) muss links liegen“, dann ist der geschlossene Kreis G stabil! (Voraussetzung:
stabiler offener Kreis plus maximal zwei Integratoren)

3.3.2 Zwei Wege zur Stabilitidtsuntersuchung des Regelkreises
1. Ubertragungsfunktion des geschlossenen Kreises berechnen und ,Grundlegendes

Stabilitétskriterium® am geschlossenen Kreis anwenden (Pole des geschlossenen Krei-
ses in der linken Halbebene)

2. Ubertragungsfunktion des offenen Kreises (Go = GrGsGyr) berechnen und Ny-
quistkriterium anwenden

3.4 Reglerentwurf

Drei (einander teilweise widersprechende) Forderungen:

1. Stabilitat
2. Geschwindigkeit

3. Geringe Regelabweichung
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—> —> G —> G —>» —>» G, —o—>

Abbildung 3.13: Allgemeiner Regelkreis mit Storgrofe und geteilter Strecke

Ubertragungsfunktion des offenen Kreises:

GO - GR : G51 : GSQ

Fithrungstibertragungsfunktion:

X Go 9.
G, = w11 G, (moglichst — 1)
Stortibertragungsfunktion:
G
G, = g =1 +Sé¥0 (moglichst — 0)
Regelabweichung bei Fiihrung:
Gow = < L (moglichst — 0)
ow = — = moglicns
Regelabweichung bei Stérung;:
G
Ge. = g =7 +Sé0 (moglichst — 0)
3.4.1 Beispiel: P-T3
1
G s+1
2
G
T2 s+
P-Regler:
Gr=Kp

Ubertragungsfunktion des offenen Kreises:
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2Kp

G0:($+1)(s2+3+1)

Ubertragungsfunktion des geschlossenen Kreises:

2K
o - Go _ GimEsm 2KR
71+ Gy L+ a5+ D (82 +s+1) + 2Kk

Gute Fiithrung:

Kp—0o00 = Gg—1

Aber: wenn Kpr zu grol = Regelkreis instabil.

Stationédre Regelabweichung:

. _ I 1 (s (s +s+1)
TG Lty D (P s+ 1)+ 2Kn

geringe Regelabweichung:

Kpr—>o00 = Ge—0

Aber: s.o.

Grenzwertsatz der Laplace-Transformation:

lim A (t) = lim G (s)

t—00 s—0

Fithrungssprung:

Stationdre Regelabweichung:

lim e = ey, = lim Gy,
t—o0 s—0

i (s+1)(s*+s+1) 1
o = lIm =
520 (s+1)(s?+s+1)+2Kr 1+2Kpg

Erhohung der Reglerverstarkung verringert die stationdre Regelabweichung:

KRT = 6ooi/

Bei Verwendung eines [-Reglers:
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1

Gr =
" T['S

Ubertragungsfunktion des offenen Kreises:

2
S Tys(s+1)(s24s+1)

Go
Regelabweichung bei Fiihrung:

1 1 . Tys(s+1)(s°+s+1)

1+G0_1+m—T]S(S+1)(32+3+1)+2

Gew -

Stationdre Regelabweichung:

T 1) (0
o — lim G — 10(04+1)(0°+0+1) :9:0
s—0 T:.00+1)(02+04+1)4+2 2

Keine stationire Regelabweichung bei I-Regler (Nachteil: langsamer, Destabilisierung)

3.5 Giitekriterien

ht A

A
Wende- i
tangente N 2€
100% Y

50% A

\/

0% ;
t50 tan tmax te t
T, <T,>

Abbildung 3.14: Sprungantwort (Fithrung)

emaz Maximale Uberschwingweite

tmazr  Cmaz tritt auf.

T, Verzugszeit (Wendetangente N0 %)

T, Ausgleichszeit (Wendetangente N0 % N 100 %)

tan  Anregelzeit (Kurve N 100 %)
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t. Betrag der Regelabweichung nie mehr gréfer als € (z. B. t3¢)

emax
2¢ i
/\l\ N
te T
Abbildung 3.15: Sprungantwort (Stérung)
Kostenfunktion:
K=K ty, + Ky-t. + K3 - €40 + K4--- = Minimum |

= K, willkiirlich wahlen = Kompromiss

3.5.1 Integralkriterien
I = Min |
Lineare Regelfléche:

o0

I:/e(t)~dt (e > 0)

0

Betragslineare Regelflache:

e}

I :/|e(t)| -dt  (umsténdlich)
0

Quadratische Regelflache:

o0

I = / e?(t) -dt (analytische Berechnung)
0

Zeitbeschwerte quadratische Regelflache:
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[e.9]

I = / e (t)-t-dt (Dauer der Regelabweichung)
0

Stellaufwand:

/ )+ta-y (t)) dt (a: subjektiver Wichtungsfaktor)
0

3.6 Regleroptimierung mit Simulation

\ 4
A

- o

2 Optimierer 2
(Ingenieur) )

—»L Y e > Gy —e >

Abbildung 3.16: Regleroptimierung

3.7 Einstellregeln fiir Regelkreise
PID-Regler (vergleiche Abschnitt 2.12)

P Grundregelung
I Statische Genauigkeit (langsam)

D Geschwindigkeit (I-Kompensation)

Zwei bewahrte Methoden:
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3.7.1 Nach Ziegler und Nichols (Stabilitiatsrand)

P-Regler aufdrehen, bis der Regelkreis stationar schwingt:

- K Rprit

Periodendauer der Schwingung messen:

— Tk’rit

Regler Reglerverstarkung K Nachstellzeit Ty  Vorhaltzeit Ty

P 0.5Kp, ., ] ]
PI 045 Kp, ., 0.85 Thyit -
PID  0.6Kg,. 0.5 Thorit 0.12 Thorit

Tabelle 3.1: Reglerverstarkung, Nachstellzeit und Vorhaltzeit in Abhangigkeit von den
Parametern des Schwingversuchs

3.7.2 Nach Chien, Hrones und Reswick (Sprungantwort)

A
hy(t)
K 1

—

\

> T« T,—» t

Abbildung 3.17: Sprungantwort einer Regelstrecke

® Wendetangente — Verzugszeit T,,, Ausgleichszeit T

® Anwendbar, wenn s/7, > 3

Definition einer Hilfsgrofle:
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T,

K = 3T,
Regler Optimiert fiir Uberschwingen Kp Ty Ty
P Storung 0% 03Ky - -
20 % 07Ky - -
Fiihrung 0% 03Ky - -
20 % 07Ky - -
PI Storung 0% 06Ky 40T, -
20 % 07Ky 23T, -
Fithrung 0% 035Ky 127, -
20 % 0.6Ky 10T, -
PID Storung 0% 095Ky 24T, 0427,
20 % 12Ky 20T, 0427,
Fithrung 0% 0.6 Ky 107, 05T,
20 % 0.95 Ky 1357, 0477,

Tabelle 3.2: Reglerverstarkung, Nachstellzeit und Vorhaltzeit in Abhéngigkeit von statio-
narer Verstarkung, Verzugszeit und Ausgleichszeit
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3.8 Storgroflenaufschaltung

A\
—_—> —> G —> ——> Gy —> —e—>

Abbildung 3.18: Storgréfenaufschaltung

Prinzip: Kompensation der Storgrofle z, wenn sie messbar ist. Die Stérgrofie soll also
moglichst keinen Einfluss auf die Ausgangsgrofie x haben:

Ubertragungsfunktion von z nach z:

G.+GsGs
Gpo=——F—7-"=0
1+ GrGg
Zahler von G,, muss verschwinden:
G,+ Gs:Gsg =0

Bedingung fiir Storgroffenaufschaltungsiibertragungsfunktion:

G.

Gst = ~Gs

Problem: Gg; ist nicht immer exakt realisierbar
= Wenigstens stationédre Storunterdriickung (s = 0)
Alternative: Signal vor dem Regler aufschalten:

Neue Ubertragungsfunktion von z nach x:

G. + G,GrGs 1

oz = =77 GrGy

0
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Zahler gleich null:

G, + GlyGrGs =0

Aufschaltungsbedingung:

, G
St — GRGS

Vorteil: keine Stellenergie notwendig

Nachteil: Signal muss durch Regler
3.9 Vorsteuerung
lz
—Y 5 G, — Y 5 Gy —> —>*»

Abbildung 3.19: Reine Steuerung

Forderung;:
r=w
Ideal:
1
Gy =
V= Gs
z.B.:
2 3s+1
T 3511 YT
Probleme:
1. Gy ist nicht genau bekannt.
2. (g ist nicht exakt invertierbar (Totzeit, reiner Integrator, ... ).

3. Storungen werden nicht erkannt.
Stationére Vorsteuerung GYy,, erfiillt die Forderung x = w wenigstens nach dem Ein-
schwingvorgang (t - 0o = s=0):

Beispiel oben:

3s+1 3-041

T 50 9 9 0.5
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3.9.1 Kombination mit Regelung

Yv

lz
w e Yr y X

—> ——> G —> —> G —> — >

—> Gy

Abbildung 3.20: Kombination von Steuerung mit Regelung

Vorgehensweise:

1. Vorsteuerung Gy auf moglichst gute Inversion auslegen

2. Regler G auslegen (muss nur noch Unzuldnglichkeiten der Steuerung kompensie-
ren)

3.10 Digitale (zeitdiskrete) Regelung

PR

«® e(kT) y(kT) D y(®)
/ — > Prozessrechner —— A —>

t t ioi y(t t
ﬂ» e—()> Dlgltaler L} StreCke _X.(,_>

T Regler

Abbildung 3.21: Digitale Regelung (T: Abtastzeit)
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e &

_e(kT)

»

»>Tl* t
(a) Abgetasteter Eingangsgrofienverlauf

y

Ly(KT)

> T

Abbildung 3.22: Abtastung bei digitaler Regelung

3.10.1 z-Transformation

Gegeben ist die Ubertragungsfunktion im s-Bereich:

und daraus abgeleitet, die Differenzengleichung:

Vg1 = f (Uk, Vk—1,-- 5 Uk+1, Uk, Ug—1,- - )

3.10.2 Naherungen

Rechteckregel:
z—1
8 ~
Tz
Tustinformel:
2 z—1
S~ — -
T z+1

3.10.3 Beispiel: Digitaler Tiefpass

Ubertragungsfunktion im s-Bereich:

Abtastzeit:
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(b) Ausgangsgrofie wird gehalten.

»
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Verwendung der Tustinformel:

z—1
~ 20 -
z+1
Ubertragungsfunktion im z-Bereich:
2 2 1 2 2
G(2) = . _ (z+1) _ 224
5-20-25+1 100(z—1)+=2z+1 101z—99
Quotient aus Ausgangs- und Eingangsgrofie:
Vg, 2z 4+ 2
G = — - —
(2) up 101z — 99

Uber Kreuz multiplizieren:

vk (1012 — 99) = uy (22 + 2)

,2Multiplikation mit z bedeutet Verschieben in positive Zeitrichtung*:

Vg + 2 = Uk+1

Differenzengleichung;:

101Uk+1 - 991}k = 2uk+1 + 2uk

Nach ,neuer Ausgangsgrofe® auflosen:

99Uk + 2uk+1 + 2uk

V41 =

101
U )
U, T u, v 1 Vien
. RN A e R
A

Vi T Vi 99

Abbildung 3.23: Diskrete Realisierung eines digitalen Tiefpasses
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Teil 11

Flugregelung
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Kapitel 4

Einfiihrung

4.1 Bezeichnungen der Luftfahrt

® Alle Bezeichnungen nach [1] - [2] (Erweiterungen: Vyu, £2k)
® Alle Koordinatensysteme sind rechtshiandig (,,Rechte Hand-Regel®).
® Zusammenfassung und individueller Test unter [3]

® Viele Abbildungen sind (mit freundlicher Genehmigung des Autors) [4] nachemp-
funden.

4.1.1 Bewegungsgroflen

Y, Y, v

z, 1, W

\ 4

Abbildung 4.1: Bewegungsgrofien

Positionsvektor (Richtung, Strecke):
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T nach vorne
s= |y nach rechts
z nach unten

Kraftvektor:

<
I
»~<

Momentenvektor:
Geschwindigkeitsvektor:

Drehgeschwindigkeitsvektor:

P rollen
2= |q nicken
T gieren

Lagewinkelvektor (Eulerwinkelvektor):

4.1.2 Indizes

A Aerodynamisch
K Bahn
W Wind
F Schub

f Flugzeugfestes (kérperfestes) Koordinatensystem

IS

Flugwindfestes (aerodynamisches) Koordinatensystem

o

(Flug)bahnfestes Koordinatensystem

g Erd(lot)festes (geodéatisches) Koordinatensystem

73



Beispiele

Resultierende aerodynamische Kraft im aerodynamischen Koordinatensystem: R‘a4
Resultierendes aerodynamisches Moment im bahnfesten Koordinatensystem: Qﬁ
Schubkraft im flugzeugfesten Koordinatensystem: FJF

Schubmoment: Q¥

Gewichtskraft im geodatischen Koordinatensystem: G

Gravitationsvektor (Erdbeschleunigung) im flugzeugfesten Koordinatensystem: g

4.1.3 Geschwindigkeiten

Abbildung 4.2: Fluggeschwindigkeit, Bahngeschwindigkeit und Windgeschwindigkeit

Bahngeschwindigkeit Vx  Relativgeschwindigkeit des Flugzeugs gegeniiber der Erde
Fluggeschwindigkeit V4 Relativgeschwindigkeit des Flugzeugs gegentiiber der Luft

Windgeschwindigkeit Viyr  Relativgeschwindigkeit der Luft gegeniiber der Erde
Zusammenhang zwischen Flug-, Bahn- und Windgeschwindigkeitsvektor:
Vik =Va+ Vi
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Aquivalenter Zusammenhang fiir Drehgeschwindigkeitsvektoren:

N = 24+ 2w

4.1.4 Stellgroflen

Abbildung 4.3: Ein positiver Steuerkniippelausschlag (Ziehen) fithrt zu einem negativen
Hohenruderausschlag und dadurch zu einem positiven Nickmoment.

Abbildung 4.4: Ein positiver Steuerkniippelausschlag (nach rechts) fithrt zu einem ne-
gativen Querruderausschlag (rechtes Ruder nach oben) und dadurch zu einem positiven
Rollmoment.
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Abbildung 4.5: Ein negativer Pedalwinkel (rechtes Pedal getreten) fithrt zu einem negati-
ven Seitenruderausschlag und dadurch zu einem positiven Giermoment.

4.2 Koordinatentransformation

Der allgemeine dreidimensionale Vektor:

VvV =

SRS

lasst sich in jedem Koordinatensystem beschreiben.
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Ya

A
Yo
R e o %o
/ A% 1 Xa
zZ, V 1 %
(a) Vektor V, dargestellt (b) Gleicher Vek-
im a-Koordinatensystem tor V', dargestellt
im b-Koordinaten-
system

Abbildung 4.6: Koordinatentransformation

Vektor V', ausgedriickt im a-Koordinatensystem:

U 1
Veo=1v| =1v,| = |0
w 0

Das b-Koordinatensystem entsteht durch eine 90°-Drehung des a-Koordinatensystems um
die y,-Achse. Der Vektor V' wird dabei nicht gedreht.

Gleicher Vektor V', ausgedriickt im b-Koordinatensystem:

U Up 0
Vi=|v| = |vw| =10
w Wy 1

Der Vektor hat (ausgedriickt im neuen Koordinatensystem) jetzt andere Koordinaten; es
handelt sich aber immer noch um den selben Vektor.
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4.2.1 Koordinatensysteme

f ‘ Flugzeug ‘
A T T T
Mfk Mfa Mfe
Vk Va
_BK Ox | Mk —B ‘ a ‘ ‘ o ‘
Y Mfg T M,, T . M., T :
w ‘ Wind k ‘ Bahn a ‘ Flugwind € ‘ Experim
LIJ Bw _B
X, : Vw 5 X, Vg o X, : Va Ye =Yt
Yw: Xg’ Yg Vi ! Xg’ Yg ! Zy Xp Zg Ze=1Z,
@ “Hy
T ,‘ T :
ng - ng Mag
Yo X | v X | V.| K
v T v ! i
g ‘ Erde

Abbildung 4.7: Koordinatensysteme (Achsenkreuze) und Transformationsmatrizen der
Luftfahrt (nach [1])

® Das geodatische (erdfeste, erdlotfeste, earth-fived) Koordinatensystem (Index: g) ist

durch seine in Richtung der Schwerkraft zeigende z;-Achse definiert. Die x4-Achse
liegt dann senkrecht dazu in der Erdhorizontalebene und wird héufig in Nordrichtung
angenommen. Die y,-Achse bildet (wie bei allen beschriebenen Koordinatensyste-
men) mit den anderen beiden Achsen ein rechtshéndiges Koordinatensystem und
liegt daher auch in der Erdhorizontalebene.

Das flugzeugfeste (korperfeste, body-fized) Koordinatensystem (Index: f oder kein
Index) beschreibt die Lage des Flugzeugs im Raum. Die z s-Achse zeigt dabei nach
vorne (tiblicherweise in der Symmetrieebene vom Schwerpunkt zur Nase des Flug-
zeugs), die yp-Achse weist nach rechts (Steuerbord) und die z;-Achse entsprechend
nach unten.

Das aerodynamische (flugwindfeste, aerodynamic) Koordinatensystem (Index: a) ist
durch seine x,-Achse definiert, die in die Richtung des Fluggeschwindigkeitsvektors
(Anstromvektor, Flugwind) Vj zeigt. Da das Koordinatensystem durch die Fest-
legung einer Achse noch nicht eindeutig definiert ist (es konnte ja noch um seine
z,-Achse rotieren) wird die z,-Achse in der Fluzeugsymmetrieebene (zs-z-Ebene)
festgelegt. Dadurch liegt dann auch die yp-Achse in der x,-y,-Ebene (vergleiche
Abbildung 4.10).

Das bahnfeste (flight-path) Koordinatensystem ist analog zum aerodynamischen Ko-
ordinatensystem definiert: Die xp-Achse zeigt in die Richtung des Bahngeschwindig-
keitsvektors V. Als zuséitzliche Festlegung wird die y,-Achse tiblicherweise in die
Erdhorizontalebene (z,-y,-Ebene) gelegt (vergleiche Abbildung 4.9)
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4.2.2 Drehung vom erdfesten ins flugzeugfeste Koordinatensys-
tem

Zy

Abbildung 4.8: Eulerwinkel-Drehung vom erdfesten ins flugzeugfeste Koordinatensystem

[5] (nach [1])

® Der Gierwinkel (Steuerkurs, Azimut, heading, azimuth angle) ¥ dreht in der x,-y,-
Ebene um die z,-Achse. Dabei wird die x,-Achse in die Knotenachse k; und die
y,-Achse in die Knotenachse £y iiberfithrt. Hauptwertebereich: —m < ¥ <7

® Der Nickwinkel (Langsneigung, pitch angle, inclination angle) © dreht in der x -z,
Ebene um die ky-Achse. Dabei wird die k;-Achse in die x¢-Achse und die z4-Achse
in die Knotenachse k3 tiberfiihrt. Hauptwertebereich: —5 <60 < 7

® Der Rollwinkel (Querneigung, Hangewinkel, bank angle) @ dreht in der y;-zp-Ebene
um die x-Achse. Dabei wird die ks-Achse in die ys-Achse und die k3-Achse in die
zy-Achse iiberfithrt. Hauptwertebereich: —7 < @ <7
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4.2.3 Drehung vom erdfesten ins bahnfeste Koordinatensystem

Zg

Abbildung 4.9: Drehung vom erdfesten ins bahnfeste Koordinatensystem [5]

® Der Bahnazimut (flight-path azimuth angle) x dreht in der z,-y,~Ebene um die
zg-Achse. Dabei wird die z,-Achse in die Knotenachse k; und die y,-Achse in die
yr-Achse tiberfithrt. Hauptwertebereich: —m < y <7

® Der Bahnwinkel (Bahnneigungswinkel, Steigwinkel, angle of climb, flight-path incli-
nation angle) v dreht in der x-z;-Ebene um die y,-Achse. Dabei wird die k-Achse
in die zj;-Achse und die z,-Achse in die z;-Achse iiberfithrt. Hauptwertebereich:
—I<y<T
2 =7 >3

® Eine Drehung um die x;-Achse (wie bei den Eulerwinkeln mit @) findet nicht statt,
da die yi-Achse per definitionem in der Erdhorizontalebene (x,-y,-Ebene) liegt.
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4.2.4 Drehung vom aerodynamischen ins flugzeugfeste Koordi-
natensystem

\‘\

TN

Abbildung 4.10: Drehung vom aerodynamischen ins flugzeugfeste Koordinatensystem [5]

® Der Schiebewinkel (sideslip angle) § dreht in der z,-y,~-Ebene um die z,-Achse.
Durch die Drehung in mathematisch negativer Richtung, also um ,Minus Beta“
wird die z,-Achse in die Zwischenachse x. (experimentelles Koordinatensystem)
und die y,-Achse in die y;-Achse iiberfithrt. Hauptwertebereich: —3 < 3 < 7

® Der Anstellwinkel (angle of attack) o dreht in der z-zy-Ebene um die yg-Achse.
Dabei wird die z.-Achse in die zs-Achse und die z,-Achse in die z-Achse tiberfiihrt.
Hauptwertebereich: —m < a <7

® Eine Drehung um die x-Achse (wie bei den Eulerwinkeln mit @) findet nicht statt,
da die z,-Achse per definitionem in der Flugzeugsymmetrieebene (z-z-Ebene)
liegt.

4.2.5 Transformationsmatrizen

Drehung mit dem Winkel w, um eine z-Achse:

cosw, sinw, 0
M, = |—sinw, cosw, 0
0 0 1
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Drehung mit dem Winkel w, um eine y-Achse:

coswy 0 —sinw,
M, = 0 1 0

sinw, 0 cosw,

Drehung mit dem Winkel w, um eine x-Achse:

1 0 0
M, =10 cosw, sinw,
0 —sinw, cosw,

Gesamttransformationsmatrix bei einer Drehreihenfolge w, — w, — w, (,von rechts
lesen*):

Mges = M, - M, - M,

1 0 0 coswy, 0 —sinw, cosw, sinw, 0
= |0 cosw, sinw, 0 1 0 —sinw, cosw, 0
0 —sinw, cosw,| |sinw, 0 cosw, 0 0 1

Transformation vom geodétischen ins flugzeugfeste Koordinatensystem:

1 0 0 cos@ 0 —sin@]| [ cos¥ sin¥ 0
M, =10 cos® sind 0 1 0 —sin¥ cos¥ 0 (4.1)
0 —sin®d cos®| [sin® 0 cosO 0 0 1
I cos © cos ¥ cos @sin¥ —sin @
= |sin®sin©®@cos¥ —cosPsin¥ sindsinOsin¥ + cosPcos¥ sinP cos @
(cosPsinO cos¥ +sinPsin¥  cosPsinOsin¥ —sinPcos¥  cos P cos O

Transformation vom aerodynamischen ins flugzeugfeste Koordinatensystem:

[cosa 0 —sinal [ cos(—B) sin(—=3) 0
M,=1| 0 1 0 —sin(—pf) cos(—5) 0
sina 0 cosa | | 0 0 1
[cosae 0 —sinal [cosB —sinf 0
=] 0 1 0 sinfg cosf 0
sinaw 0 cosa || O 0 1

[cosacos S —cosasinf —sina
= sin 3 cos 8 0
sinacos 3 —sinasinfS  cosa

Transformation vom geodatischen ins bahnfeste Koordinatensystem:

82



[cosy 0 —siny] [ cosy siny 0
Mp,=1| 0 1 0 —siny cosy O
[siny 0 cosvy 0 0 1
[cosycosy cosysiny —sinvy

= | —siny coS X 0
[sinycosy sinysiny cosvy

Transformationsrichtungsumkehr

Zwei Moglichkeiten zur Erzeugung der Umkehrtransformation (Riicktransformation):

1. Durch Umkehren der Reihenfolge der Einzeltransformationen und negative Winkel:

[ cos(—x) sin(—x) 0] [cos(—y) 0 —sin(—7)
Mg, = |—sin(—x) cos(—x) 0 0 1 0
0 0 1] [sin(—=y) 0 cos(—7)
[cosy —siny 0 cosy 0 sinvy
= |siny cosy O 0 1 0
0 0 1| [—=siny 0 cosvy

[cos ycosy —siny cosysiny
= |sinycosy cosy sinysin~y
| —sinvy 0 COoS 7y

2. Durch Invertieren der Transformationsmatrix. Bei den verwendeten Drehtransfor-
mationsmatrizen vereinfacht sich das Invertieren auf das Transponieren:

~1 T
Mg, = ng = ng

[cosycosy cosysiny —sin-v|
= | —siny CoS X 0
|sinycosx sinysiny cos?y |
[cosycosy —siny sin~ycosy|

= |cosysiny cosy sinysiny
| —sinvy 0 COos 7y

Beispiel

Der Gewichtsvektor hat im geodétischen Koordinatensystem nur eine z-Komponente,
namlich seinen Betrag:

Nach der Transformation ins flugzeugfeste Koordinatensystem ist der Gewichtsvektor
.vollbesetzt“:

83



—sin® 0
Gy=M;;Gy= |-+ --- sinPcosO 0
. cos®@cos@| |mg

—sin® - mg —sin @
= |sin®cos©@-mg| = |[sin@PcosO | - mg
cosPcos O - mg cos P cos O

4.2.6 Umrechnung zwischen kartesischen und spharischen Ko-
ordinaten

Umrechnung der Fluggeschwindigkeit
Der Fluggeschwindigkeitsvektor V4 lasst sich, bedingt durch die Definition des aerody-

namischen Koordinatensystems, in diesem besonders einfach ausdriicken. Er hat dort nur
eine u -Komponente:

() Va
VAa = | Va = 0
w A 0

Nach der Transformation ins flugzeugfeste Koordinatensystem ergeben sich die Beziehun-
gen zwischen den kartesischen und den sphérischen Koordinaten (Kugelkoordinaten) des
Fluggeschwindigkeitsvektors:

Ug cosacosfp -+ - [V4 V4 cos acos 5
VAf: VA :MfaVAa: sinﬂ 0 = VASiHB
wal sinawcosf -+ -+ |0 Vasin acos 3
——
kartesisch sphérisch

Uberpriifen der Identitit der Betrige beider Darstellungen:

(Va| = \/U?fo +vip Fwhy
= \/VX cos? accos? B+ V3sin? B+ V3sin? a cos?

= | V2 (Cos2 o + sin? oz) cos? B+ V3sin? 3
\ i
= |V2 (COS2 B + sin? B) =Vy q. e d

1

Quotient zweier kartesischer Koordinaten:

way  Vasinacosf

= = tana
uar  Vacosacos 3
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Auflésung nach dem Anstellwinkel:

w
o = arctan <Af>
UAf

Zweite kartesische Koordinate:

VAf = VA : sinﬁ

Auflésung nach dem Schiebewinkel:

£ = arcsin (?X)

Umrechnung der Bahngeschwindigkeit

Der Bahngeschwindigkeitsvektor Vi lasst sich, bedingt durch die Definition des bahnfes-
ten Koordinatensystems, in diesem besonders einfach ausdriicken. Er hat dort nur eine
u-Komponente:

UK VK
VKk = (Vg = 0
WK k 0

Nach der Transformation ins erdfeste Koordinatensystem ergeben sich die Beziehun-
gen zwischen den kartesischen und den sphéarischen Koordinaten (Kugelkoordinaten) des
Bahngeschwindigkeitsvektors:

Up COS 7y COS cee e % i COS 7Y COS
\% Vi
Vikg = |vk | = Mg Vg = |cosysiny -+ --- 0 | = | Vkcosvysiny
wk], —sin~y 0 — Vi siny
kartesisch sphérisch

Quotient zweier kartesischer Koordinaten:

Vkg Vi cosysiny

= = tany
Ugg Vi COS7yCOs)

Auflésung nach dem Bahnazimut:

Dritte kartesische Koordinate:

Wgg = — Vg siny
Auflésung nach dem Bahnwinkel:

7y = — arcsin <ng)
Vi
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Zusammenfassung der Umrechnungen

Sphérisch — Kartesisch:

uap = Vycosacos 3
VAf = VAsinB

wafs = Vasinacos 3
Ugg = Vi cOS7y cos X
Vg = Vi cosysin x

Wig = — Vg sinvy

Kartesisch — Sphérisch:

w
o = arctan <Af>
uAf

— arcsi ’UAf)
15} arcsm<v

A

— 2 2 2
VK — \/qu +UKg + ng

v = —arcsin (ng )
Vi

v
X = arctan <Kg>
UK g
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4.2.7 Darstellung der Winkel und Vektoren

Abbildung 4.11: Winkel und Vektoren in der z-z-Ebene
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Abbildung 4.12: Winkel und Vektoren in der z-y-Ebene

Z, Z, Z

Abbildung 4.13: Winkel und Vektoren in der y-z-Ebene
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Kapitel 5

Subsysteme

5.1 Aerodynamik

Die Relativgeschwindigkeit V4 zwischen dem Flugzeug und der Luft mit der Dichte p
erzeugt einen Staudruck:

~ Py
="y
q 5 /A

Das Produkt aus Staudruck ¢ und Bezugsfliigelfliche S wird aerodynamische Krafteinheit
E genannt:

E=q-5

Die aerodynamischen Kréfte ergeben sich als Produkt der aerodynamischen Krafteinheit
mit den dimensionslosen Beiwerten:

Auftrieb:

A=F-Cy
Widerstand:

W=F- -Cy
Querkraft:

Q=FE-Cq

Fiir die Momente wird dimensionsbedingt zusétzlich noch eine Bezugslinge benétigt. Ub-
licherweise wird dazu heute bei allen Momenten die Bezugsfliigeltiefe [, verwendet:

Rollmoment:
L=F-1l,-C
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Nickmoment:

Giermoment:

5.1.1 Beiwerte

Die Beiwerte sind im allgemeinen nichtlineare Funktionen der jeweiligen aerodynamischen
Einflussgrofen:

Beiwerte der Langsbewegung

Auftriebsbeiwert:

Cy=Cyla,n, Ma, q, &, ...)

Widerstandsbeiwert:

Cw =Cw (o, n, Ma, ...)

Nickmomentenbeiwert:

Com = Cp (o, n, Ma, q, &, ...)

Alternative Modellierung des Widerstandsbeiwertes iiber die Widerstandspolare:

A
CA

»
T »

CWO C w

Abbildung 5.1: Widerstandspolare

Widerstandsbeiwert:

Cw = Cyo+ k- C3

Dabei ist Cyyg der Nullwiderstand (bei Auftrieb gleich null) und & - C% ist der durch den
Auftrieb induzierte Widerstand.
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Beiwerte der Seitenbewegung

Querkraftbeiwert:

OQ:CQ(ﬁ,p,T,f, C,)

Rollmomentenbeiwert:

Cl:Cl(ﬁap7ra£7 ga)

Giermomentenbeiwert:
Cn:Cn(ﬁu p, T 57 C? )

5.1.2 Lineare Derivativ-Aerodynamik

Ein Derivativ ist die partielle Ableitung eines Beiwertes nach einer Einflussgrofe.

Beispiel: Auftriebskennlinie

/ Cao=Caa=0)
/a(C, = 0) a

»
>

Abbildung 5.2: Auftriebskennlinie (Auftriebsbeiwert iiber Anstellwinkel)

Innerhalb eines Arbeitsbereiches (in der Umgebung eines Arbeitspunktes) wird eine li-
neare Abhéngigkeit des Auftriebsbeiwertes vom Anstellwinkel angenommen. Dort ist die
Steigung der Kennlinie konstant und entspricht dem Derivativ C4,:

Auftrieb aufgrund des Anstellwinkels:

0C' s
OAa - %

Analog werden weitere Auftriebsderivative definiert:

Auftrieb aufgrund des Hohenruderausschlags:

0Cy
CAU = 877”]
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Auftrieb aufgrund der Machzahl:

0Cy
Cante = 51t

Da die Derivative (genau wie die Beiwerte) dimensionslos sind, muss eine Drehgeschwin-
digkeit (Einheit: s7!) erst mit einer Bezugszeitkonstante dimensionslos gemacht (nor-
miert) werden, bevor nach ihr partiell abgeleitet werden kann. Ublicherweise wird zur
Normierung die Zeit

verwendet:
Normierte aerodynamische Nickgeschwindigkeit:
l

=T - T
da N " gA Vi ga

Das entsprechende Derivativ ergibt sich, indem nach der normierten Drehgeschwindigkeit
partiell abgeleitet wird:

Auftrieb aufgrund der Nickgeschwindigkeit:

oC 4
9 (q4)

Der Gesamtauftriebsbeiwert setzt sich, im Rahmen der beschriebenen linearen Derivativ-
Aerodynamik, aus der Linearkombination der Einzeleinfliisse zusammen:

Caq =

Gesamtauftriebsbeiwert:

Ca=Cay+Can-a+Cay-n+Capra- Ma+Cay-qy + ...

Entsprechendes gilt fiir die tibrigen Kraft- und Momentenbeiwerte:

Gesamtnickmomentenbeiwert:

Cm:Cm0+Cmaa+Cmn'n+OmMaMa/+cmqqz+

Gesamtquerkraftbeiwert:

Co=Cqs-B+Co 0+ Cqr 14+ Coc-§+Coc-C+ ...

Gesamtrollmomentenbeiwert:

Cl:C’m~B+Clp~pf4+01r~r2+Clg~£+Clg-§+...

Gesamtgiermomentenbeiwert:
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Co=Cng-B+Crp i +Cnp 13+ Cre - E+Cre-C+ ...

Die einzelnen Derivative werden iiblicherweise nach Threm Ursache-Wirkungs-Zusammen-
hang bezeichnet:

Nickddmpfung (Dadmpfung der Nickbewegung):

Cing

Gierdampfung (Dampfung der Gierbewegung):

Cnr

Windfahnenstabilitat (Ausrichtung ,in den Wind*“):

Chp

Schieberollmoment(enderivativ) (,Rollen aufgrund Schieben®):

Clﬁ

Gierseitenkraft(derivativ) (,Querkraft aufgrund Gieren®):

Cor

USwW.

5.2 Triebwerk

Schubvektor (Maximalschub) abhéngig von

® Luftein- und -austrittsgeschwindigkeitsvektor (Schubeinstellwinkel, Anstellwinkel,
Schiebewinkel)

® Luftdichte (Hohe)
® Machzahl ...

Tiefpassverhalten:

Tr-F+F=F,
mit

Tr Triebwerkszeitkonstante
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F Schub
F,.  Sollschub

Schubmoment:
T F,
QF:T'FXFF: Ty| X Fy
T, F,
mit

Fr Schubvektor
rr  Schubvektorangriffspunkt (Abstand des Triebwerks vom Referenzpunkt)

Qr Schubmomentenvektor

5.3 Stellerdynamik

5.3.1 Tierversuch

Nehmen Sie an, in Threr Badewanne wéare auf halber Hohe ein Brett angebracht, unter
dem eine Kunststoffente auf dem Wasser schwimmt.

(—

I
1=
%I

L
(a) Ablauf geschlossen, Zulauf ge- (b) Ablauf geoffnet, Zulauf ge-
Offnet, Wasserpegel steigt, Ente schlossen, Wasserpegel sinkt, Ente
steigt. sinkt nicht.

Abbildung 5.3: Tierversuch

® Solange der Zulauf geoffnet ist, der Ablauf geschlossen und die Ente das Brett noch
nicht beriihrt, steigt die Ente zusammen mit dem steigenden Wasserpegel.

® Sobald die Ente gegen das Brett stofit, bleibt sie in konstanter Hohe stehen. Der
Wasserpegel steigt dessen ungeachtet weiter.

® Wenn nun der Zulauf geschlossen und der Ablauf gedffnet wird, beginnt der Was-
serpegel zu sinken. Die Ente allerdings sinkt noch nicht.

® FErst, wenn der sinkende Wasserpegel die Ente unter dem Brett erreicht, kann diese
zusammen mit dem Wasser sinken.
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5.3.2 Verallgemeinerung

Badewanne Energiespeicher, Integrator, dynamisches System
Zu- bzw. Ablauf Eingangsgrofie u des Integrators
Wasserpegel Energieinhalt, Zustand, Ausgangsgrofie v des Integrators

Brett Begrenzung v, der Ausgangsgrofie

\

\Q,
-«

u T, \% \A
—»/—»%—»

(a) Blockschaltbild (b) Zeitverlaufe

Abbildung 5.4: Nachtraglich begrenzter Integrator

Problem: Wenn die Ausgangsgrofie eines dynamischen Systems begrenzt wird, kann es
passieren, dass die internen Zustandsgrofien ,voll laufen“ und die Reaktion des Sys-
tems erst nach einer unerwiinschten Totzeit T sichtbar wird, obwohl das begrenzte
Ausgangssignal eigentlich sofort reagieren sollte.

Losung: Zusétzliches Stoppen der entsprechenden Zustandsgrofien, wenn die Ausgangs-
grofe in ihre Begrenzung lauft. Im Beispiel: Stoppen des Integrators durch explizites
Nullsetzen seiner Eingangsgrofle: Schlielen des Zulaufs.

Merke:

Niemals gedankenlos die AusgangsgroBe eines dynamischen Systems begrenzen.
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5.4 Wind

250

i

Downburst

/
e
150 ://

100
50
O [ [ [ [ I
-3000 -2000 -1000 0 Lande-
bahn

Abbildung 5.5: Verlust eines Passagierflugzeugs am Flughafen J.F. Kennedy am
24.6.1975

Der Gesamtwind lésst sich vereinfacht aus drei Anteilen (stationdrer Wind, Turbulenzen
(Bben) und Scherwind) zusammensetzen:

Vw = Vi stat + Vw Turs + Vv scher

5.4.1 Turbulenzen

Rausch- weilles Tief- rosa
— YT
generator Rauschen  pass Rauschen

Abbildung 5.6: Weiles Rauschen: gleiche Leistungsdichte fiir alle Frequenzen. Rosa Rau-
schen: hohe Frequenzen haben geringere Leistungsdichte.

5.4.2 Windgradienten, Scherwind
Der Nabla-Operator

Nabla-Operator (Partieller Ableitungsoperator):
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V:

Die Anwendung des Nabla-Operators auf ein Skalarfeld p liefert einen Vektor (den Gra-
dienten):

Gradient:

Vp =

p$
= {py} = grad (p)

Pz

Die Anwendung des Nabla-Operators auf ein Vektorfeld V liefert, je nach Art des Produk-
tes, einen Skalar (Divergenz), einen Vektor (Rotation) oder eine Matrix (Jakobi-Matrix):

Divergenz (Skalarprodukt, inneres Produkt):

9
i
Y
0z

_Ou Ov 8710

V-V = V= —%—l—a—y—l—azzux—l—vy—l—wzzdiv(V)

Rotation (Kreuzprodukt):

e ow ov
% % u By 0z Wy — Uy
VxV= o XV = % X |v| = %—%% = |u: — wy| =rot (V)
5z EE w or ~ oy Uz = Uy

Jakobi-Matrix (Dyadisches Produkt, aueres Produkt):

ro 0 T 0
F) ) )
r_|T|yr_ |7 _ |7
L6z oz oz
=9 9 oy| = |W v Wy
& Qv Gu U, v, w,

Quellenfreiheit:
div(V) =u, + v, +w, =0

Drehfreiheit:




Windgradienten

> —> —>

> —> —>
> —> —>
> —> —>

»

Ye

(a) uw, (Wind in z-Rich-
tung, der in z-Richtung zu-
nimmt)

> —> —>

> —» —>

Vwy

> —> —>

> —» —>

»

Ye

(b) vwy (Wind in y-Rich-

tung, der in y-Richtung zu-
nimmt)

Abbildung 5.7: Windgradienten

411

(¢) ww, (Wind in 2z-Rich-
tung, der in z-Richtung zu-
nimmt)

Abbildung 5.8: Horizontales, quellenfreies Windfeld (up, = —vwy)
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Abbildung 5.10: Horizontales, drehendes Windfeld (uw, = —vw,)
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Beschreibung des durch Windscherungen hervorgerufenen Windanteils mittels der Jako-
bi-Matrix (Scherungstensor):

- T
uw T Uwz UVwz Wwg
T
VW Scher = | Uw - (v : Vw) S = |Uwy Uwy Wwy S
LWW ] geher Uwz UVwz Wwe

Uwe Uwy Uws| |T Uwg * T+ Uy - Y + Uy, - 2
= |Uwz Uwy Vwz| |Y| = | UWa T+ Vwy Y+ Vw2
(Wwe Wwy Wws| |2 Wy T+ Wy Y+ Wws - 2

5.4.3 Flug im stationaren Windfeld

1
—

0 C 3

AR EEEPEEREE

Abbildung 5.11: Flug im stationdren Windfeld (Trochoide, Zykloide)

In jedem Punkt gilt:

Vik =Va+ Vi (Vektorsumme)

Das Flugzeug fliegt gegentiiber der Luft einen schiebewinkelfreien, stationéren, horizon-
talen Kurvenflug. Alle aerodynamischen Gréflen (Anstellwinkel, Auftrieb, ...) sind kon-
stant.

Der Bahngeschwindigkeitsvektor ist immer tangential zur Flugbahn ausgerichtet.

Punkt A ,Umkehrpunkt® des ,Kreises” gegeniiber der Luft, bei z, = 0. Der Flugge-
schwindigkeitsvektor zeigt genau in z,-Richtung.
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Punkt B Das Flugzeug fliegt genau in negative y,-Richtung, gegen den Wind. Der Betrag
des Bahngeschwindigkeitsvektors ist minimal.

Punkt C Das Flugzeug fliegt genau in positive y,-Richtung, mit dem Wind. Der Betrag
des Bahngeschwindigkeitsvektors ist maximal.

Punkt D Umkehrpunkt der Trochoide gegeniiber der Erde. Der Bahngeschwindigkeits-
vektor zeigt genau in x,-Richtung.

Bahngeschwindigkeit und Energie

Zwischen den Punkten B und C nimmt der Betrag des Bahngeschwindigkeitsvektors zu;
das Flugzeug beschleunigt also bezogen auf die als ruhend angenommene Erde. Zwischen
C und E wird das Flugzeug abgebremst.

Gegeniiber der Luft fliegt das Flugzeug einen Kreis. Der Fluggeschwindigkeitsvektor dreht
sich also mit der konstanten Gierwinkelableitung:

Vg =

V4 sin (Lpt
V4 cos (Wt

Der Wind kommt von Westen und hat daher nur eine y,-Komponente:

0
|t

Der Bahngeschwindigkeitsvektor im erdfesten Koordinatensystem ergibt sich dann aus
der Vektorsumme:
+ 0 =
Vvl

Der Betrag der Bahngeschwindigkeit ist eine periodische Funktion der Zeit:

V4 sin (Wt)

Vike = Vag + Viwg = .
Ko A9 Wa Va cos (Wt) + Vi

V4 cos

V4 sin Wt)
wt)

Vicg = |Vig| = \/(VA sin (@t))z + (VW + V4 cos (‘pt))Q

— \/Vj sin2 (gpt) + Vi3 + 2V4y V4 cos (Wt) + V7 cos? (!Z/t)

— \/Vj + Vi3 + 2Viy V4 cos (!Pt)

Wenn sich die Bahngeschwindigkeit des Flugzeugs im Verlaufe der Trochoide dndert, kann
auch die kinetische Energie nicht konstant sein:

1
Eyin = §mV[%g = const.

Da aber die potenzielle Energie der Hohe beim horizontalen Kurvenflug konstant bleibt,
muss die Energie direkt aus dem umgebenden Windfeld entnommen, bzw. an dieses ab-
gegeben werden.
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5.5 Kinetik

Die Flugzeughewegung besitzt sechs Freiheitsgrade:
Drei translatorische Freiheitsgrade:

® Vorne/hinten

® Rechts/links

® Oben/unten
Drei rotatorische Freiheitsgrade:

® Rollen (um die z-Achse)
® Nicken (um die y-Achse)

® Gieren (um die z-Achse)

Jeder Freiheitsgrad wird durch zwei Zustande (Geschwindigkeit und Position, bzw. Dreh-
geschwindigkeit und Lagewinkel) beschrieben — insgesamt 12 Zustéande.

Die 12 Zustande lassen sich zu vier dreidimensionalen Zustandsvektoren zusammenfassen:

Bahndrehgeschwindigkeitsvektor:

Pk

Tk

Lage(drehwinkel)vektor:

Bahngeschwindigkeitsvektor:

Uk
VK = | Vg
Wk

Positionsvektor:

®
Il
ISP

Die gesamte Kinetik wird dann durch ein System von vier gekoppelten, nichtlinearen
Vektordifferenzialgleichungen beschrieben:
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gﬁz.f@(‘{21{7 ¢)
Vi = fv (R, Vi, 2k, D)
é:.fs<VK7 @)
Q O i
Q. twoy —*, Y Lo 2, Z ¢,

!

|

|

!

R Vi Vv s S
— LRV, , ®) —> i —— f (Vi D) — i —

!

Abbildung 5.12: Allgemeine Kinetik der Flugzeugbewegung (6 Freiheitsgrade)

5.5.1 Differenzialgleichung der

,Die Geschwindigkeit ist die zeitliche Anderung der Position*:

ds

Position

¢

= _v
dt K

Ausgedriickt im erdfesten Koordinatensystem:

dsg

a - VK
Transformation der Bahngeschwindigkeit:
ds
- = MusVis

Verwenden des Ableitungspunktes fiir die direkte Ableitung im geodétischen (inertialen)

Koordinatensystem:

Sg= My Vi
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5.5.2 Differenzialgleichung des Drehwinkels
,Die Drehgeschwindigkeit ist die zeitliche Anderung des Drehwinkels“:

Ad
= _n
dt K

Ausgedriickt im flugzeugfesten Koordinatensystem:

Wenn jetzt alle Drehwinkel-Komponenten des Lagevektors um die flugzeugfesten Achsen
drehen wiirden, dann wirde
()
dt s

@
©
7

die Zeitableitungen der Eulerwinkel

beinhalten und die Drehwinkeldifferenzialgleichung wére komplett. Leider aber dreht ¥
nicht um die zy-Achse, sondern um die z,-Achse und © dreht nicht um die ys-Achse,
sondern um die ko-Knotenachse. Die entsprechenden beiden Winkelableitungen miissen
also erst einzeln in das flugzeugfeste Koordinatensystem transformiert werden:

0
0
1 0 0 ] O
+ 10 cos® sin®| |O
|0 —sin® cos?| |0
1 0 0 ] [cos® 0 —sin@] [0
+ 10 cos® sind 0 1 0 0
0 —sin® cos®| [sin® 0 cosO 14

1 0 —sin® | [&
=0 cos® sindcos@| |O
0 —sin® cosPcosO| |

Die Drehwinkeldifferenzialgleichung lautet dann:

1 0 —sin© @ PKyf
0 cos® sin®cos@O| |O| =N2k¢ = |qrf
0 —sin® cosPcosO| |¥ TKf
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Zur Auflésung nach dem Ableitungsvektor muss die Transformationsmatrix invertiert wer-
den. Leider ist sie nicht orthogonal (weil die Eulerwinkel um Achsen drehen, die aufeinan-
der nicht senkrecht stehen) und kann daher nicht einfach durch Transponieren invertiert
werden:

éé 1 sin®tan©® cosPtan®
®=10|=10 cos @ —sin® QKf:MQf'an (51)
W‘ 0 sin ¢'/ cos © cos 45/ cos ©

5.5.3 Differenzialgleichung der Bahngeschwindigkeit

Impulssatz: ,,Die Kraft R ist die zeitliche Anderung des Impulses P*:

4P
“ =R
dt

Ausgedriickt im flugzeugfesten Koordinatensystem:

dP)
— ) =Ry
(),

Problem: Das flugzeugfeste Koordinatensystem, in dem die Impulsénderung

dt ;
beschrieben wird, ist kein Inertialsystem, sondern dreht mit der Bahndrehgeschwindigkeit
2k gegeniiber der als ruhend angenommenen Erde. Wie in Abschnitt 5.5.3 gezeigt wird,

muss daher bei der inertialen Ableitung des Impulses die Drehung des flugzeugfesten
Koordinatensystems im so genannten Eulerterm (Kreuzprodukt) berticksichtigt werden:

Pf+QKf XPf:Rf

,Impuls ist Masse mal Geschwindigkeit*:

(mVKf)'+ QKf X (mVKf) = Rf
Produktregel der Differenziation:

mVKf + mVKf + QKf X (mVKf) = Rf

Vernachléssigung der Massenédnderung;:

mVK_f + QK_f X (mVKf) = Rf
Ausklammern der konstanten, skalaren Masse:
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m (VKf + QKf X VKf) = Rf

Gesamtkraft aus Triebwerk, Aerodynamik und Gewicht:

m(VKf—i-.QKf X VKf) ZR?—FR?—FGJE

Transformation von Gewicht und Luftkraft:

m (VKf + QKf X VKf) = R? + MfaRf + Mngg
Auflésen nach der Ableitung:

. 1
VKf = % (R? + MfaRaA + Mngg) — QKf X VKf

,Herauskiirzen“ der Masse aus dem Gewicht:
. 1
Vir = (R} + MyaR2) + Myogy — 25 x Vicy

Ableitung eines Vektors in einem drehenden Koordinatensystem

Im Folgenden wird das geodéatische Koordinatensystem als inertiales (ruhendes, raumfes-
tes) Koordinatensystem aufgefasst und das flugzeugfeste Koordinatensystem als Beispiel
fiir ein nicht inertiales (drehendes) Koordinatensystem verwendet.

Die inertiale Ableitung (hochgestellter Index g) eines Vektors V', ausgedriickt im flug-
zeugfesten Koordinatensystem (tiefgestellter Index f) ergibt sich, indem der Vektor aus
dem flugzeugfesten Koordinatensystem ins geodéatische Koordinatensystem transformiert
wird, dort inertial abgeleitet und dann wieder ins flugzeugfeste Koordinatensystem zu-
riicktransformiert wird:

aviy? d(MysVy)
), @t
Produktregel:
av\? av\’  d(my,)
) =M, M 9y
(dt>f f"( gf(dt>f+ dt
Ausmultiplizieren:

av\? av\’ d (M)
<dt> = My, M,y (dt) + My, ——2V;
f f

Matrizen zusammenfassen und Punkte verwenden:
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dv\? . .
(dt) =Vi+ MypgMysVy
f

dV)f .
— ] =V
(%),

Dabei ist

die direkt im flugzeugfesten Koordinatensystem komponentenweise durchgefiithrte Ablei-
tung des Vektors, wiederum ausgedriickt im flugzeugfesten Koordinatensystem. Die Zeita-
bleitung der Transformationsmatrix

d (Myy)
dt

wird ebenfalls einzeln fiir jedes Element der Matrix durchgefiihrt.

= Myf

In einer etwas ldnglicheren Herleitung (Matlab-Datei:
https://m-server.fk5.hs-bremen.de/rtfr/skript/euler_term.mlx)
lasst sich das die Euler-Winkelableitungen beinhaltende Matrizenprodukt

Mnggf

zu einem Kreuzprodukt mit dem Vektor der flugzeugfesten Bahndrehgeschwindigkeit zu-
sammenfassen:

davy? .
(dt) :Vf+QKfXVf
f

Das Kreuzprodukt §2x5 x V¢ wird manchmal als ,,Euler-Term® bezeichnet.

Beispiel: Horizontaler (gefesselter) Kurvenflug (ohne Hiangen, ohne Schieben)

A A
Ax, X¢
Xt VK o VK ’
X
Y : ]
v, Ye

Abbildung 5.13: Drehung des flugzeugfesten Koordinatensystems und des Bahngeschwin-
digkeitsvektors bei horizontalem Kurvenflug
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Da sich der Bahngeschwindigkeitsvektor Vi (tangential zur Flugbahn) beim horizontalen,
hénge- und schiebefreien Kurvenflug zusammen mit dem Flugzeug (und damit auch mit
dem flugzeugfesten Koordinatensystem) dreht, zeigt er immer in z ;-Richtung.

Er ist daher, wenn er im flugzeugfesten Koordinatensystem ausgedriickt wird, konstant:

qu
VKf = 0
0

Ergo verschwindet die direkt im flugzeugfesten Koordinatensystem komponentenweise
durchgefiihrte Ableitung:

Wi\ _ g o
a ), KT

f 0
Da die Flugbahn in der Erdhorizontalebene liegt, kann der Drehgeschwindigkeitsvektor
nur eine z-Komponente besitzen. Diese ist gleich der zeitlichen Anderung des Gierwinkels
in negativer Drehrichtung:

0
QKf = O
—v

Die vollstiandige inertiale Geschwindigkeitsableitung lautet dann:

av\? ‘ 0 0 UK f ‘0
(dt) = Vit Qg x Vi= 00+ 0 1 x| 0 == ugy
f 0 -y 0 0

Der Term —¥ - u ks entspricht dabei, physikalisch richtig, genau der Zentripetalbeschleu-
nigung, die in negativer y,-Richtung wirkt und das Flugzeug auf seiner Kreisbahn halt.

5.5.4 Differenzialgleichung der Bahndrehgeschwindigkeit

Die Herleitung der Drehgeschwindigkeitsdifferenzialgleichung erfolgt analog zu der Her-
leitung der Geschwindigkeitsdifferenzialgleichung. Es sind lediglich die Kréafte durch die
Momente, der Impuls durch den Drehimpuls (Drall), die Geschwindigkeit durch die Dreh-
geschwindigkeit und die skalare Masse durch den Tensor der Tragheitsmomente zu erset-
zen:

Drehimpulssatz: ,,Das Moment Q ist die zeitliche Anderung des Drehimpulses D*:

dD
¢

Ausgedriickt im flugzeugfesten Koordinatensystem:
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dD
(), -

Inertiale Ableitung:

Dy + Q2xy x Dy = Qg

,Drehimpuls ist Tragheitstensor mal Drehgeschwindigkeit*:

(Iy - 2xy) + 2xyp x (I - Rxy) = Qy

Konstanter Tragheitstensor:

Ip Oy + 25 x (I Q) = Qy

Gesamtmoment aus Triebwerk und Aerodynamik:

Iy Qx5+ x5 < (I - Qx5) = QF +QF

Transformation des aerodynamischen Moments:

Ip - Qs+ iy x (I - Qxs) = QF + My Q)

Auflésen nach der Ableitung:

s = I (QF + M7aQf — 25 < (I - Qi)

Der Tragheitstensor kann - als Matrix - leider nicht aus dem Kreuzprodukt ausgeklammert
werden. Aus dem gleichen Grund berechnet sich sein Kehrwert durch regulére Matrizenin-
version.

Der Tragheitstensor

Der Tragheitstensor beschreibt, analog zu der Masse bei translatorischen Bewegungen, die
Tragheit, mit der sich das System einer Drehbewegungsinderung widersetzt. Wéhrend
aber die Masse als skalare Grofle in allen translatorischen Richtungen gleich grof3 ist,
unterscheiden sich die Drehtrigheiten je nach betrachteter Drehachse.

Im flugzeugfesten Koordinatensystem lautet der (symmetrische) Trégheitstensor:

L —luyp —luay
Ip= =Ly Ly —lyy
Loy Ly Ly

Auf seiner Hauptdiagonale befinden sich die Trégheitsmomente:
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Ixf:/(yfc—kz?)-dm
ny:/(xfc—l—z]%)-dm

Ein Tragheitsmoment stellt, anschaulich interpretiert, also die Summe (Integral) aller infi-
nitesimal kleinen Masseteilchen multipliziert mit dem Quadrat ihres jeweiligen Hebelarms
(pythagoraischer Abstand von der entsprechenden Drehachse) dar.

Die Nicht-Diagonalelemente des Tragheitstensors heilen Deviationsmomente:

fzyf:/(ﬂﬁf'yf)'dm
[xzf:/(xf'zf)'dm

Iyzf = / (yf . Zf) . dm

Bei einem Deviationsmoment werden die Masseteilchen formal mit jeweils zwei Hebelar-
men (Positionskoordinaten) multipliziert, was zur Folge hat, dass bei symmetrischen Flug-
zeugen I,y und [,.; verschwinden. Wenn namlich bei einem Flugzeug die x;-zy-Ebene
eine Symmetrieebene darstellt, bedeutet dies, dass es fiir jedes Masseteilchen auf der
rechten Seite der Symmetrieebene ein entsprechendes (identisches) Masseteilchen auf der
linken Seite gibt. Beide unterscheiden sich nur durch das Vorzeichen ihrer y-Koordinate
(rechts positiv, links negativ), sodass das Integral (die Summe) immer dann verschwindet,
wenn der Integrand einen yy-Faktor beinhaltet:

Symmetrisches Flugzeug:

Imyf = ]ny =0

Der Tragheitstensor beinhaltet dann neben den Tréagheitsmomenten nur noch das Devia-
tionsmoment I, :

[xf 0 “—dzzf
I; = 0 Iy 0 (5.2)
Werden die flugzeugfesten Achsen in Richtung der Haupttriagheitsachsen definiert, dann
(und nur dann) verschwindet auch das letzte Deviationsmoment:

L.y =0
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Wirkung der Deviationsmomente Ubertrigt man das zweite Newton’sche Axiom

F=m-a

auf die Drehbewegung, so wird aus der Kraft F' das Moment @, aus der Beschleunigung
a die Drehbeschleunigung {2 und aus der skalaren Masse m der Tragheitstensor I:

Q=1 0

Die Auflésung nach der Drehbeschleunigung lautet dann:
N=I1'Q (5.3)

Die Inversion des Tragheitstensors lasst sich noch relativ iibersichtlich analytisch durch-

fithren. Die Inverse einer Matrix kann bekanntermaflen aus dem Quotienten ihrer Adjunk-

tenmatrix und ihrer Determinante berechnet werden:

1

E——
T

=

Unter Verwendung von Gleichung (5.2) ergibt sich dann (wobei der Index f aus Uber-

sichtlichkeitsgriinden weg gelassen wurde):

1
I(f ; _(I)m ! Iyo[z LoD Ixély
y =TI DL ols = I
L. 0 I T A N )
1 Ies
I,I,-12, (1) I,I,-12,
=| 0 4 o
IIIZZ:JI%Z 0 IIIZiI%Z

Wird nun dieser inverse Tragheitstensor benutzt, um in Gleichung (5.3) den Zusammen-
hang zwischen Drehbeschleunigung §2 und Drehmoment @ herzustellen

N=I"'Q
IZ IZL‘Z
P o O mngm| [L
ICL‘Z IIL‘
r T.I.—12, 0 T.I.—12, N
so zeigt die erste Zeile
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dass eine Rollbeschleunigung p nicht nur durch ein Rollmoment L erzeugt wird, sondern
dass auch ein Giermoment N tber das Deviationsmoment [, zur Gesamtrollbeschleuni-
gung beitrigt. Andersherum argumentiert bewirkt ein reines Giermoment also nicht nur
eine Gierbeschleunigung sondern eben auch eine parasitare Rollbeschleunigung.

Seitenleitwerk

Abbildung 5.14: Bei einem reinen Giermoment reagiert das Flugzeug (zusatzlich zur Gier-
beschleunigung) wegen des ,,Zuriickbleibens“ des Seitenleitwerks auch mit einer Rollbe-
schleunigung.

5.6 Quaternionen

Die nicht orthogonale Transformationsmatrix in der Lagedifferenzialgleichung (5.1) bein-
haltet die Quotienten

sin @ sin © cosPsin O sin @ cos @
sin@tan@zie, cos®@tan © =
CoS

cos® 7 cos® cosO

deren Nenner fiir einen Langsneigungswinkel © von +7 verschwindet. Wenn zusatzlich der
Hangewinkel @ ein Vielfaches von § betragt, wird der entsprechende Quotient unbestimmt

0), ansonsten nehmen die Quotlenten unendlich grofle Werte an. Eine Simulation bricht

in allen Féllen mit einer Fehlermeldung ab.
Physikalisch-anschaulich &uflert sich das Unbestimmtheitsproblem beispielsweise bei ei-
nem senkrecht nach unten ausgerichteten Flugzeug (@ = —g) durch das Zusammenfallen

der erdfesten z- und der flugzeugfesten x-Achse. Sowohl ein ,Gieren® mit ¥ um die 24
Achse als auch ein Rollen mit ¢ um die z;-Achse fithren jetzt zur gleichen Bewegung um
die senkrechte Flugzeugldngsachse (Gimbal Lock).

Zur Losung des Problems kann man in der Lagedifferenzialgleichung als Zustandsgro-
Ben statt der drei Lagewinkel [@ © ¥ | die vier Komponenten einer Quaternion [a b ¢ d |
verwenden.

5.6.1 Eigenschaften der Quaternionen
Quaternionen sind — dhnlich wie die komplexen Zahlen — eine Erweiterung der reellen Zah-

len. Wahrend eine komplexe Zahl z aus einem Realteil a und einem skalaren Imaginarteil
b besteht: z = a+b-1, besitzt eine Quaternion Z einen Realteil a und einen vektoriellen
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Imaginérteil [b ¢ d], dessen Komponenten jeweils mit ihrer eigenen imagindren Einheit i,
j und k multipliziert werden:

Z=a+b-i+c-j+d-k

Die imaginaren Einheiten sind wie bei den komplexen Zahlen definiert:

P=p=K=-1

Zusatzlich ergibt das Produkt zweier unterschiedlicher imaginarer Einheiten die dritte
und es ist anti-kommutativ (Vorzeichenwechsel bei Reihenfolgevertauschung):

i-j=k j-k=i k-i=j
jri=—k k-j=—i ik=—]

Die Summe zweier Quaternionen berechnet sich komponentenweise

Zl -+ Z2 = ((Il + bll + Clj + dlk) + ((12 + bgl + C2j -+ dzk)
= (al+(12)+(b1+b2)i+(61+02)j+<d1+d2)k

wahrend beim Quaternionenprodukt die Vorzeichen der Produkte der imaginédren Einhei-
ten berticksichtigt werden miissen:

Zy - Zy = (ay + bii + c1j + dik) - (ag + bai + c2j + dok)
= (a1a2 —b1by — 109 — dldz)
+ (a1bg + bras + c1dy — dyca) i
+ (a1c9 — byds + crag + dibs)
+ (a1dy + bycg — c1by + dyag) k

Die konjugierte Quaternion Z ergibt sich — wie bei den komplexen Zahlen — durch ein
negatives Vorzeichen vor dem Imaginéarteil:

Z=a+bi+cj+dk=a— (bi+cj+dk)=a—bi—cj—dk (5.4)

Das Produkt einer Quaternion mit ihrer Konjugierten ist rein reell

Z-Z=(a+bi+cj+dk)-(a—0bi—cj—dk)
= (aa + bb + cc + dd)
+ (—ab+ ba — cd + dc) i
+ (—ac+ bd + ca — db) j
+ (—ad — bc + c¢b+ da) k
=+ 0+ + &
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und entspricht dem Betragsquadrat |2 |2 der Quaternion:

Z| =\ Z -Z =Va%+ b2+ 2+ d?

Jede Quaternion mit einer Lénge ungleich null lasst sich mittels Division durch ihren
Betrag in ihre Einheitsquaternion iiberfiihren:

oo Lo e b

d
j+ ok (5.5)
z| |zl |z]"  |Z]

2]

5.6.2 Berechnung der Quaternion aus dem Drehwinkel und der
Drehachse

In Gleichung (4.1) ist die Transformationsmatrix My, definiert, die aus trigonometrischen

Funktionen der Eulerwinkel &, © und ¥ besteht und die einen Vektor v = [z y 2]7 vom
erdfesten (Index g) ins flugzeugfeste (Index f) Koordinatensystem transformiert:

o

Yr| =

z

-t (5.6)

cos O cos¥ cos @ sin¥ —sin® Tg
sin®sin © cos¥ — cosPsin¥ sin@sinOsin¥ + cosPcos¥ sinPcosO | |y,
(cosPsin@ cos¥ +sinPsin¥  cosPsinOsin¥ —sinPcos¥  cosPcosO| |z

Die gleiche Transformation kann nun auch mit einer Quaternion realisiert werden.

g

Abbildung 5.15: Gesamtdrehung vom erdfesten ins flugzeugfeste Koordinatensystem mit
dem Winkel = um die Drehachse n
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Dazu werden die in Abbildung 4.8 dargestellten drei Einzeldrehungen mit ¥, @ und &,
die notig sind, um das erdfeste in das flugzeugfeste Koordinatensystem zu iiberfiihren,
zu der in Abbildung 5.15 veranschaulichten Gesamtdrehung mit dem Winkel = um die
Drehachse nn = [n, n, n,]? zusammengefasst. (Die Drehachse hat dabei in beiden Koor-
dinatensystemen die gleichen Koordinaten, da sich das flugzeugfeste Koordinatensystem
ja genau um die Drehachse herum dreht und sich die Koordinaten der Drehachse dabei
nicht verdndern.) Unter der Voraussetzung, dass der Drehachsenvektor n ein Einheitsvek-
tor ist (also seine Lange gemaf Gleichung (5.5) auf eins normiert wurde), lasst sich aus
Drehwinkel und Drehachse die zugehorige Einheitsquaternion Zp aufbauen:

Zp=a+bi+cj+dk

— —_— — —

= _(EY. (2. N (5.7)
—005(2)—i—nx-sm<2>1+ny-51n(2)J+nz-s1n<2)

5.6.3 Berechnung des Drehwinkels und der Drehachse aus der
Quaternion

Bei gegebener Quaternion Zp = a + bi + ¢j + dk berechnen sich der zugehorige Drehwin-
kel Z und die Drehachse n = [n, n, n,|* direkt aus Gleichung (5.7). Der Realteil der

Quaternion liefert den Drehwinkel:

—

a = cos (;) = = =2arccos (a)

Mit dem gerade berechneten Drehwinkel ergibt sich die Drehachse dann aus dem Imagi-
néarteil der Quaternion:

—_—
—

bi+cj+dk:nx-sin<;)i+ny-sin<;>j—|—nz-sin<;>k

Ny sin (
C

5.6.4 Berechnung der Eulerwinkel aus der Transformationsma-

trix

Aus einzelnen Elementen der Transformationsmatrix in Gleichung (5.6) ergeben sich Glei-
chungen, um die Eulerwinkel zu berechnen:

115



M13 = —sin® (58)
M, = cos © cos ¥ (5.9)
My = cos Osin¥ (5.10)
M3 = sin® cos O (5.11)
Mss = cos P cos O (5.12)
Der Lingsneigungswinkel folgt direkt aus Gleichung (5.8):
—sin®@ =M;3 = 6O = —arcsin M3 (5.13)
Aus dem Quotienten der Gleichungen (5.10) und (5.9) berechnet sich der Azimut
cos O sin ¥ M, (M12>
cos © cos¥ an My, arctan My, ( )
und der Quotient der Gleichungen (5.11) und (5.12) fithrt zum Hangewinkel:
sin @ cos © Mg Mo )
cosbeos@ 0 M3 aretan (M33 (5.15)

Um bei der programmtechnischen Umsetzung fiir ¥ und & den vollen Winkelbereich
(—m...m) zu erhalten, muss die in den meisten Programmiersprachen vorhandene atan2-
Funktion verwendet werden, die auch mit den Singularitdten umgehen kann, die bei einem
whnormalen” Arkustangens auftreten, wenn die Nenner der Gleichungen (5.14) oder (5.15)
verschwinden, weil ein Winkel 7 betragt. In manchen Veréffentlichungen wird vorgeschla-
gen, nach der Berechnung des Léngsneigungswinkels gemafl Gleichung (5.13), diesen in
die Gleichungen (5.9) - (5.12) einzusetzen, um mit arcsin- oder arccos-Funktionen ¥ und
@ zu berechnen. Auf diese Weise wiirden ¥ und @ allerdings félschlicherweise auf die
Wertebereiche (=7 ... %) bzw. (0...7) eingeschrankt, da arcsin und arccos nur in diesen
Bereichen Werte liefern.

5.6.5 Berechnung der Transformationsmatrix aus der Quaterni-
on

Die konjugierte Quaternion Zp zu der in Gleichung (5.7) definierten Quaternion lautet
nach Gleichung (5.4):

Zp=a—"bi—cj—dk

Auch der zu transformierende Vektor vy = [z, y, 24]"

dargestellt:

wird in Form einer Quaternion Z,

Zg =04 x4+ ygj + 2k
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Die zu Gleichung (5.6) analoge Transformation ins flugzeugfeste Koordinatensystem ge-
schieht dann mittels zweier Quaternionenprodukte

Z;=ZpZy Zp
= (a —bi —cj —dk) - (04 x4+ y,j + z,k) - (a + bi + ¢j + dk)
=0
+ (<a2+b2—c2—d2> xg+2(bc+ad)yg+2(bd—ac)zg)i (5.16)
+(Q(bc—ad)zzg+(a2—62+02—d2>yg+2(cd+ab)zg>j
—l—(2(bd+ac):cg+2(cd—ab)yg+(aQ—bz—CZ—l—dz)zg)k

wobei die Quaternion

Zf:O+xfi+yfj+sz

die Komponenten des transformierten Vektors vy = [ y; 25 |7 beinhaltet. Gleichung (5.16)
kann tiibersichtlicher in Matrixschreibweise dargestellt werden

Ty (a® +V* - — d?) 2 (be + ad) 2 (bd — ac) T,
yr| = 2 (be — ad) (a®> = b* + * — d?) 2 (cd + ab) Yg (5.17)
2 2 (bd + ac) 2 (cd — ab) (a? =0 =+ d*)| |z

sodass die Transformationsmatrix direkt aus den Quaternionenkomponenten berechnet
werden kann:

(a> +0* — 2 — d?) 2 (be + ad) 2 (bd — ac)
M, = 2 (bc — ad) (a®> —b*+ 2 — d?) 2 (cd + ab) (5.18)
2 (bd + ac) 2 (cd — ab) (a*> = b* — &+ d?)

Wenn in einer Simulation die FEulerwinkel nicht explizit benotigt werden, kann die aus
den Komponenten der Quaternion aufgebaute Transformationsmatrix My, aus Glei-
chung (5.18) direkt in den Differenzialgleichungen der Bahngeschwindigkeit und der Posi-
tion verwendet werden, sodass dann keine trigonometrischen Funktionen der Eulerwinkel
berechnet werden miissen und sich der Rechenaufwand verringert.

5.6.6 Berechnung der Eulerwinkel aus der Quaternion

Durch das Einsetzen der entsprechenden Elemente der Transformationsmatrix aus Glei-
chung (5.18) in die Gleichungen (5.13) - (5.15) berechnen sich die Eulerwinkel direkt aus
den Quaternionenkomponenten:

O = —arcsin M3 = —arcsin (2 (bd — ac)) = arcsin (2 (ac — bd)) (5.19)

2 (be + ad) )

@R —c2_ 2 (5.20)

M
¥ = arctan (]\412) = arctan (

11
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M.
¢ = arctan (ﬁ) = arctan ( (5.21)

33

2 (cd + ab)
E—P -t

Natiirlich muss bei einer numerischen Umsetzung der Gleichungen (5.19) - (5.21) auch
hier die atan2-Funktion verwendet werden.

5.6.7 Berechnung der Quaternion aus den Eulerwinkeln

Die in Gleichung (5.16) dargestellte Transformation vom geodétischen ins flugzeugfeste
Koordinatensystem mit Hilfe der Gesamtquaternion Zp ldsst sich auch von innen nach
aulen aus den drei Einzelquaternionen Zy, Zg und Zg aufbauen:

2 =Zs - (Zo- (%62, Z4) - Zo) - Zs
=(ZsZo - Zu) - Zy- (Zu - Zo - Zs)
=(Zy Zo - Zs)-Zy- (Zu - Zo - Za)

Zp Zp

(5.22)

Dabei wird das bei Quaternionen geltende Assoziativgesetz beachtet und die Tatsache
berticksichtigt, dass die Konjugierte eines Quaternionenproduktes gleich dem Produkt
der einzelnen Konjugierten in umgekehrter Reihenfolge ist.

Die Einzelquaternionen werden entsprechend Gleichung (5.7) aus den jeweiligen Drehwin-
keln (¥, © und @) und den zugehorigen Drehachsen (ng = [0 0 1]7, ...) aufgebaut:

RORSIROESIRSEIS

N N N~ —
+
(@)
]
TN N
R ST RC R
~
—
+
[S—Y
<
B
/‘\\
~
—
+
(@)
<
B
/‘\
~
=

SIS SR SN

GeméB Gleichung (5.22) ergibt sich die Gesamtquaternion Zp in Abhéngigkeit von den
Eulerwinkeln dann als:
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~on () ron (5)8) (m(§) o0 (5)) (o (2) 0 (2))
() (D) (3) 50 3) () 0 (3 |
(e (en (@) (Y@ O
o ()0 (e (£) 0 2 (5 o £

o 5o () (4) - () (5) (4

5.6.8 Berechnung der Quaternion aus der Transformationsma-
trix

Der pragmatische Weg, mit den bislang vorgestellten Werkzeugen die Quaternion aus der
Transformationsmatrix zu berechnen, wiirde zuerst die Eulerwinkel aus der Transforma-
tionsmatrix und dann die Quaternion aus den Eulerwinkeln ermitteln. Da dabei aber die
bekannten Probleme der Eulerwinkel (rechenzeitintensive trigonometrische Funktionen,
»gimbal lock“, vgl. Abschnitt 5.6) auftreten, wird im Folgenden eine direkte Alternative
erldutert.

Gleichung (5.18) stellt die Transformationsmatrix M, in Abhéngigkeit von den Quater-
nionenkomponenten a, b, ¢ und d dar. Zur Berechnung der ersten Quaternionenkompo-
nente a werden die Hauptdiagonalelemente der Transformationsmatrix aufsummiert:

M11+M22+M33: (a2—|—b2—62—d2) + (a2—b2+02—d2> + (CLQ—b2—C2+d2>
=3a®> b - —d? (5.24)
Die Bedingung, dass die Quaternion einen Betrag von eins besitzt

A+ +E+d2=1

lasst sich nach b? auflosen

P=1—-a>-*—d°

und in Gleichung (5.24) einsetzen

My + My + Mgz =30 = (1= a® = & = d*) = & = d” = 4a” — 1 (5.25)

sodass Gleichung (5.25) nach der gesuchten Quaternionenkomponente aufgelost werden
kann:
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0 — V My 4 Myy + Mz + 1
B 2

(5.26)

Geschickt gewahlte Differenzen zweier Matrixelemente

Mass — M3y = 2 (cd + ab) — 2 (cd — ab) = 4ab

liefern jeweils eine Bestimmungsgleichung fiir die verbleibenden Quaternionenkomponen-
ten:

_ Moz — M3 _ M3y — M d— My — My

b 4a ¢ 4a 4a

(5.27)

Leider gibt es bei der Berechnung der Quaternion gemafl Gleichung (5.26) - (5.27) das
Problem, dass die Quaternionenkomponente a, die in Gleichung (5.27) in allen Nennern
auftritt, null werden kann, sodass die anderen Komponenten nicht mehr berechenbar sind.
Die Komponente a, die sich nach Gleichung (5.23) aus

o= (B (3) s (2) v (£)on () ()

ergibt, verschwindet beispielsweise, wenn ein Eulerwinkel den Wert 0 und ein anderer
den Wert 7 besitzt, da dann sowohl ein Kosinus als auch ein Sinus und damit beide
Summanden null werden. In diesem Fall kann die Berechnung mit der zweiten Quaternio-
nenkomponente b beginnen, indem die Diagonalelemente der Transformationsmatrix mit
anderen Vorzeichen addiert werden

Mll—MQQ—Mg;g: (a2+b2—02—d2) — (CLQ—b2—|—CQ—d2) - (a2—62—c2+d2)
=—a*+30° - - &
sodass sich unter Verwendung von

a?=1-0V—-c—d

eine Bestimmungsgleichung fiir b ergibt:

Mll—MQQ—Mgg:—<1—b2—02—d2)+362—02—d2:462—1

_ VMg — My — Mss + 1
2

= b

Mit b konnen dann auch die iibrigen Komponenten ermittelt werden:
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C:M12+M21 d:M13+M31 a:M23—M32
4b 4b 4b

Insgesamt gibt es vier Sétze von Bestimmungsgleichungen, je nachdem, mit welchen Dia-
gonalelementvorzeichen und damit welcher Quaternionenkomponente begonnen wird:

a:\/M11+M22+M33+1 b:M23—M32 c=M31_M13 d:M12—M21
2 4a 4a 4a

b:\/Mll—M22—M33+1 C:M12+M21 d:M13+M31 a:M23—M32
2 4b 4b 4b

C:\/—M11+M22—M33+1 d:M23+M32 a:MSI_Mli’) b:M12+M21
2 4c 4c 4c

d:\/—Mll—M22+M33+1 a:M12_M21 b:M13+M31 C:M23+M32
2 4d 4d 4d

Da es sich bei der zu berechnenden Quaternion um eine Einheitsquaternion handelt,
muss mindestens eine ihrer Komponenten signifikant von null verschieden sein, sodass
mit dieser begonnen werden kann. In der numerischen Praxis kann einfach nach dem
grofften Radikanten +M;p; + Mss + M3z + 1 gesucht werden, um zu entscheiden, welcher
Satz von Bestimmungsgleichungen verwendet wird.

5.6.9 Differenzialgleichung der Quaternionen

Unter der wichtigen Annahme, dass die Quaternion Z = a+ bi+ ¢j + dk eine Einheitsqua-
ternion ist, lasst sich die Lagedifferenzialgleichung (5.1) durch die sehr kompakte Quater-
nionendifferenzialgleichung ersetzen:

1
Z=5-72 Za (5.28)

Dabei ist Zq eine reine Quaternion (mit verschwindendem Realteil), deren Imaginérteil
aus den drei Elementen pgy, ¢xy und riy des flugzeugfesten Bahndrehgeschwindigkeits-
vektors §2x ¢ besteht:

Zg=0+prsi+qrsj+rrrk

Auf der rechten Seite der Quaternionendifferenzialgleichung (5.28) kann das Quaternio-
nenprodukt ausmultipliziert werden:

Z=>-7-Zg

(a+bi+cj+dk) - (0+ prri+ gy + rik)

A (=prs-b—qrs-c—rryp-d) (5.29)

N =N =N =

+(pKf-a+rKf-c—qu-d)i
+(grf-a—7rgs-b+pry-d)]
—l—(rKf-a—l—qu-b—pKf-c)k}
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5.6.10 Numerische Simulation

Héufig - beispielsweise fiir die numerische Simulation - wird Gleichung (5.29) in Matrix-
schreibweise dargestellt, indem die Quaternion Z = a + bi + ¢j + dk in Form eines reellen
Spaltenvektors Z = [a b ¢ d]” und die rechte Seite von Gleichung (5.29) als Matrix-
Vektor-Produkt ausgedriickt wird:

a 0  —pxs —qxy —Trr| [a

. 1 — 1

A L I L I L Iy VY (5.30)
¢l 2|ggy —rxyr 0 PKf cl 2
d d

YKk 4Kf  —PKf 0

Waéhrend einer langeren Simulation konnen unvermeidliche numerische Fehler dazu fithren,
dass die Voraussetzung fiir Gleichung (5.30), ndmlich die Tatsache, dass es sich bei Z um
eine Einheitsquaternion handelt, nicht mehr erfillt ist. Um diesen Fehler méoglichst klein
zu halten, bietet sich eine einfache Proportionalregelung an. Der Regelfehler AZ = 1—|Z]|,
also die Abweichung des Quaternionenbetrags von eins, wird dabei mit dem aktuellen
Zustand Z skaliert und tiber einen P-Regler mit dem Verstarkungsfaktor K auf alle
Komponenten des Quaternionenintegrators zurtickgefiihrt. Die erweiterte Gleichung (5.30)
lautet dann:

N-
I

Mp-Z+K-AZ-Z

Mo - Z+K(1-|2)Z (5.31)

N~~~

'MQ'Z+K<1—\/G2+b2+C2+d2>Z

Um Rechenzeit zu sparen, kann der Betrag in Gleichung (5.31) durch das Betragsquadrat
ersetzt werden, ohne das Regelverhalten qualitativ zu verandern:

Z=g Mo Z+K(1- (@ 4V ++P)) 2 (5.52)

Wie bei jeder Reglerauslegung muss fiir die Reglerverstarkung K ein Kompromiss gefun-
den werden. Ist K zu klein, kann der Quaternionenbetrag signifikant von eins abweichen,
wahrend ein zu grofles K zu einer Versteifung des zu simulierenden Systems fithrt, mit
der Folge von langeren Rechenzeiten und der Gefahr von numerischer Instabilitat.

Das vorgestellte Verfahren zur Wahrung der Quaternioneneinheitslange hat den Vorteil,
dass es dabei nicht notig ist, die Quaternion — die ja Bestandteil des Zustandsvektors der
Simulation ist — direkt &ndern zu miissen. Wenn die Simulationsumgebung allerdings das
direkte Setzen von ZustandsgroBen ohne grofleren Aufwand gestattet, kann auch einfach
nach jedem Integrationsschritt die Quaternion mittels Division durch ihren Betrag wieder
zu einer Einheitsquaternion gemacht werden.
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Kapitel 6

Reglerauslegung

6.1 Eigenbewegung

6.1.1 Aufteilung der Zustandsgroflen in Liangs- und Seitenbewe-

gung
QK VK b S
Langsbewegung qK Ug Wk ] x z
Seitenbewegung Pk TK VK b 4 Y

Tabelle 6.1: Zustandsgrofen der Langs- und Seitenbewegung

6.1.2 Langsbewegung

A e AR
—r
DGl Wy AGI \(;C >
0, K
n LB X LB ’
L > H |
—
Eingangs- Zustands- Ausgangs-
grofen grofen grofen

Abbildung 6.1: Differenzial- und Ausgangsgleichungen der Langsbewegung (ohne Wind)

123



/< kJ"Im(S)

Anstellwinkel- Phveoid
schwingung 67 ygoide

| / Re(;

Abbildung 6.2: Polverteilung der Lingsbewegung

Anstellwinkelschwingung
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Abbildung 6.3: Anstellwinkelschwingung

® o-Schwingung*
® Nickschwingung in g, «a, ©
® Hohe Frequenz (z.B.: f =0.1Hz, T = 10s)

® Mittlere Dampfung (z. B.: D = 0.5)
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Phygoide

A A
Vi y
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v
< -0.12
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200
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Abbildung 6.4: Phygoide

®  Energieschwingung*
® Bahnschwingung in V, v
® Niedrige Frequenz (z.B.: f =0.01Hz, T'= 1005s)

® Kann instabil werden (z.B.: D = 0)

6.1.3 Seitenbewegung

& p K >
— rK X
DGl Vi AGI >
d
——= » B
¢ SB ¥ SB __F 4
- vy
Eingangs- Zustands- Ausgangs-
groflen groflen groflen

Abbildung 6.5: Differenzial- und Ausgangsgleichungen der Seitenbewegung (ohne Wind)
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Taumelschwingung

Spiralbewegung

Rollbewegung Re(s)

Abbildung 6.6: Polverteilung der Seitenbewegung

Taumelschwingung

0.016

0.012

0.008

0.004

\

0 \ \ \ \ \
0 5 10 15 20 25

Abbildung 6.7: Taumelschwingung

® Drehschwingung in 8, ¥, @, pg, 1
® Hohe Frequenz (z.B.: f =0.1Hz, T = 10s)
® Niedrige Dampfung (z.B.: D = 0.1)

Rollbewegung

® Rolltiefpass”, ,Rollverzogerung*
® Aperiodische Drehbewegung in py,, @

® Zcitkonstante: z.B.: T =1s
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Spiralbewegung
® Offener Integrator” mit ,etwas® Riickfithrung
® ¢-Block — stationdrer Hangewinkel

® Kann instabil sein — Spiralsturz

6.2 Trimmrechnung

Trimmen ist das Berechnen von Trimmgrofien (Eingangs- und Zustandsgrofien), sodass
vorgegebene Trimmforderungen (Ausgangs- und Ableitungsgrofien) erfiillt sind. Durch die
Trimmrechnung wird der (zumeist stationire) Anfangszustand einer Simulation festgelegt.

6.2.1 Horizontaler Geradeausflug

Aufgabe: Es soll ein unbeschleunigter, schiebefreier, horizontaler Geradeausflug ohne Wind
ausgetrimmt werden. Die relevanten Eingangs-, Zustands-, und Ausgangsgrofien der Léangs-
bewegung lauten:

Eingangsgrofien:
w=[F o
Zustandsgrofien:
T = [qu Ukf WKy @}T
Ausgangsgrofien:

v:[VK v o« }T

Erster Gedanke: Der horizontale Flug wird durch die Festlegung einer bestimmten
Bahngeschwindigkeit Vi und durch die Forderung nach einem verschwindenden
Bahnwinkel v = 0 definiert. Diese beiden Trimmforderungen koénnen durch die
beiden Trimmgrofen Schub F' und Hoéhenruder 7 erfiillt werden. Schub und Ho-
henruder stellen dabei sowohl den Energie- als auch den Momentenhaushalt der
Langsbewegung so ein, dass ein unbeschleunigter Flug in konstanter Hohe moglich
ist.

Zweiter Gedanke: Leider beeinflussen, physikalisch gesehen, Schub und Hohenruder
nicht direkt die gewiinschte Bahngeschwindigkeit und den Bahnwinkel. Schub und
Hohenruder erzeugen Krafte und Momente, die unmittelbar nur zu Beschleunigun-
gen und Drehbeschleunigungen fiihren. Die (Dreh-)Beschleunigungen werden dann
von den (Dreh-)Geschwindigkeitsintegratoren der Kinetik zu Geschwindigkeiten und
Drehgeschwindigkeiten integriert. Im zweiten Integrationsschritt folgen daraus Po-
sition und Lage(-Winkel).
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Beispielsweise erzeugt das Hohenruder 1 im Wesentlichen ein Nickmoment M, das
iiber das Nicktragheitsmoment unmittelbar zu einer Nickbeschleunigung ¢y fiihrt.
Die erste Integration macht dann aus der Nickbeschleunigung eine Nickgeschwin-
digkeit qx und der zweite Integrator erzeugt daraus den Nickwinkel @. Durch das
Nicken verédndert sich gleichzeitig der Anstellwinkel o, was zu einer Veranderung des
Auftriebs A fihrt. Der verdnderte Auftrieb (Vertikalkraft) erzeugt dann eine Verti-
kalbeschleunigung wy, die wiederum zu einer Vertikalgeschwindigkeit wy integriert
wird. Erst aus dieser Vertikalgeschwindigkeit resultiert eine vertikale Positionsén-
derung und damit die gewiinschte Anderung des Bahnwinkels ~.

Langer Rede kurzer Sinn: Ein Trimmalgorithmus kann nicht direkt durch ,,Wackeln*
an der Trimmgrofle Hohenruder die gewtinschte Trimmforderung Bahnwinkel ein-
stellen.

Dritter Gedanke: Dann miissen auch die an der Definition des gewiinschten Flugzu-
stands beteiligten internen Zustandsgrofen (gxr, uk s, Wiy, ©) mitgetrimmt wer-
den. Die Bestimmung der Nickgeschwindigkeit gk ist einfach. Sie muss fiir einen
stationdren Geradeausflug natiirlich verschwinden, da das Flugzeug sonst permanent
auf- bzw. abnicken wiirde. Fiir die Bestimmung der verbleibenden drei Trimmgrofien
(ug g, wi s, ©) missen jetzt weitere drei Trimmforderungen gefunden werden. Diese
folgen unmittelbar aus der Forderung nach einem unbeschleunigten Flug: Es diir-
fen weder Nickbeschleunigungen noch translatorische Beschleunigungen auftreten:
drxf = Uk = Wkys = 0.

Wenn der Flugzustand dann ausgetrimmt ist, folgen alle weiteren Ausgangsgrofien
automatisch: Der Anstellwinkel o beispielsweise errechnet sich bei reiner Langsbe-
wegung ohne Wind direkt aus: a = @ — 7.

6.2.2 Verallgemeinerung

Die am Beispiel der Flugzeuglingsbewegung erlangten Erkenntnisse lassen sich verallge-
meinern. Ein allgemeines nichtlineares dynamisches System lésst sich durch eine Vektor-
differenzialgleichung und eine algebraische Vektorausgangsgleichung beschreiben:

Vektordifferenzialgleichung:

&z=f(x, u)
Vektorausgangsgleichung;:

v=g(x, u)

'
———> f(x,u) —X> Z > g(x,u) >

!

Abbildung 6.8: Allgemeines nichtlineares dynamisches System
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Trimmforderungen (bekannt) Elemente von & und v (linke Seite der Gleichungen)

Trimmgroflen (gesucht) Elemente von @ und w (rechte Seite der Gleichungen)

Vorgehensweise

1. Fir jede Trimmforderung eine Trimmgrofe freilassen, die die Forderung erfiillen
(oder wenigstens beeinflussen) kann.

2. Fir jede Trimmgrofle eine Trimmforderung aufstellen, durch die die Trimmgrofe
definiert (oder wenigstens eingeschriankt) wird.

3. Die Elemente von & und u, die keine Trimmgroflen sind, auf feste Werte setzen.

4. Die Elemente von & und v, die keine Trimmforderungen sind, folgen automatisch.

6.2.3 Triebwerksdynamik

Jedes dynamische Untersystem (Stellerdynamik, Sensoren, Filter, Regler, ... ) des zu trim-
menden Gesamtsystems muss ,,mitgetrimmt“ werden. Wird beispielsweise ein Triebwerk
als begrenztes System erster Ordnung modelliert und wird nach dem Schubkommando F..
gesucht, das eine gewtinschte Bahngeschwindigkeit Vi bewirkt, so muss der Ausgang F'
des Schubintegrators als zusitzliche Trimmgrofe und sein Eingang F' als weitere Trimm-
forderung aufgefasst werden. Natiirlich wird im ausgetrimmten Zustand der Schub F
gleich dem Schubkommando F, sein; beide sind aber nicht bekannt und miissen daher
gemeinsam vom Trimmprogramm ermittelt werden.

Jede zuséitzliche Trimmgrofe erfordert genau eine zuséitzliche Trimmforderung. Daher
wird fiir einen stationéiren Trimmpunkt (Schub konstant) die Ableitung des Schubes zu
null gefordert: F' = 0.

F. F.pe F F Vi
— —y —— T, —» i—o—» cee ——»
Abbildung 6.9: Triebwerksdynamik mit Begrenzer

Begrenzungen

Begrenzungen stellen fiir viele Trimmalgorithmen ernst zu nehmende Gegner dar. Ub-
licherweise variiert der Optimierer im Trimmprogramm némlich die Trimmgréfien nach
einem mehr oder weniger intelligenten Verfahren so lange, bis das die Trimmforderungen
enthaltende Giitekriterium besser als eine vorgegebene Schranke geworden ist. Wenn aber
wahrend dieses Suchverfahrens der Begrenzer anspricht, weil der Trimmalgorithmus die
Trimmgrofe ,,probehalber® iiber ihren Maximalwert erhoht hat, bewirkt plotzlich eine
kleine Variation der Trimmgrofle gar keine Veranderung der Trimmforderungen mehr.
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Der gradientenorientierte Trimmalgorithmus ,,weifl dann nicht mehr, in welche Richtung
er weiteroptimieren soll” und bricht mit einer Fehlermeldung ab.

In diesen Féllen hilft es haufig, die maximale Schrittweite der entsprechenden Trimmgrofie
zu reduzieren, damit der Algorithmus die Begrenzung nicht ,aus Versehen“ in einem zu
groflen Schritt verletzt. Auflerdem ist es natiirlich sinnvoll, jede Trimmgréfe auf einen
geschatzten Anfangswert zu setzen, der moglichst nahe am erwarteten Trimmpunkt liegt.
Wenn beispielsweise der maximale Schub eines Triebwerkes im Reiseflug 90 kN betrigt,
macht es sicherlich mehr Sinn, den Anfangswert der Trimmgrofle Schub auf vielleicht
60 kN zu setzen als auf 0 kN oder gar 100 kN.

6.3 Basisregler

Der Basisregler dampft die Eigenbewegung (Nick-, Gier- und Rollddmpfer) und regelt
Fahrt, Nickwinkel, Hangewinkel und Schiebewinkel. Die Kommandos fiir diese Eingangs-
groBen des Basisreglers konnen entweder direkt vom Piloten (z. B. Sidestick kommandiert
rate command attitude hold fiir Nick- und Hangewinkel) oder von einem tiberlagerten
Bahnregelkreis kommen.

6.3.1 Basisregler der Langsbewegung

\Y - \Y
— Ay » K, F, %
Flugzeug
(Langs- _
o bewegung) 0
A- A K

Kog

Abbildung 6.10: Basisregler der Léngsbewegung

K

nq Der Nickddmpfer verwendet das Héhenruder, um die Anstellwinkelschwingung zu

ddmpfen. Dabei wird die (gemessene) Nickgeschwindigkeit quasi mit einem Sollwert
von null verglichen und das Hohenruder immer so ausgeschlagen, dass das entste-
hende Nickmoment und die daraus resultierende Nickbeschleunigung der Nickge-
schwindigkeit entgegenwirkt.
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Kv

Der Nicklageregler benutzt die gleiche Stellgrofie (Hohenruder) wie der Nickdam-
pfer und sorgt fiir die Regelung des Nickwinkels. Der Nickwinkelsollwert kann da-
bei direkt vom Piloten (beispielsweise mittels des longitudinalen Sidesticks) oder
von einem iibergeordneten (kaskadierten) Bahnregler (Hohenregler, ...) vorgege-
ben werden.

Der Fahrtregler (Autothrottle) verwendet den Schub, um eine eingestellte Sollfahrt
zu halten. Um einen stationdren Regelfehler zu verhindern, kann der Fahrtregler
einen [-Anteil besitzen.

6.3.2 Basisregler der Seitenbewegung

K¢

B(=0) V" \ e Iy
—_ — K — — R
Flugzeug B
(Seiten- =
o £ bewegung) o
— —> K, —> — — 15>
A- A K

<«
K-ip

Abbildung 6.11: Basisregler der Seitenbewegung

Der Gierdampfer misst die Giergeschwindigkeit und benutzt das Seitenruder, um
die Taumelschwingung zu dampfen. Wéhrend eines stationiren Kurvenflugs sollte
der Gierdampfer moglichst nicht aktiv sein, um die dann gewollte Giergeschwindig-
keit nicht zu unterdriicken (— Verwendung eines Hochpasses, der konstante Gier-
geschwindigkeiten nicht ,,durchlasst®).

Der Rolldampfer verwendet das Querruder, um die Rollzeitkonstante zu verén-
dern.

Der Schiebewinkelregler benutzt das Seitenruder, um den Schiebewinkel zu re-
geln. Haufig, beispielsweise beim koordinierten (schiebewinkelfreien) Kurvenflug,
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soll der Schiebewinkel verschwinden (Sollwert gleich null), um eine symmetrische,
okonomische Anstromung zu gewahrleisten. Der Schiebewinkelsollwert kann bei-
spielsweise mit den Pedalen kommandiert werden oder wird vom Autopiloten vor-
gegeben (z. B. beim Decrab-Manéver zum Ausrichten des Fahrwerkes in Landebahn-
richtung beim Landeanflug mit Seitenwind).

Ks Der Querlageregler benutzt die gleiche Stellgroie (Querruder) wie der Rolldam-
pfer und sorgt fir die Regelung des Hangewinkels. Der Hangewinkelsollwert kann
dabei direkt vom Piloten (beispielsweise mittels des lateralen Sidesticks) oder von
einem tibergeordneten (kaskadierten) Bahnregler (Kursregler, . ..) vorgegeben wer-
den.

6.4 Bahnregler

Der Bahnregler (Hohenregler und Bahnazimutregler) verwendet das , basisgeregelte® Flug-
zeug im Sinne einer Kaskadenregelung als ,modifizierte Regelstrecke®“. Die Regelgrofien
des Basisreglers (Léngsneigungswinkel und Hangewinkel) werden dabei direkt vom Bahn-
regler kommandiert.

6.4.1 Kaskadenregelung

W W X
— 2y g——>» Gp —1>g— Gy Y 5 Gy, —e+—> G, —o»—>
A- -

modifizierter, geregelter
Streckenteil Gg,

Abbildung 6.12: Kaskadenregelung

® Auflerer Regelkreis liefert Sollwert fiir inneren Regelkreis.
® Inneren Regelkreis schnell und ohne Fiihrungsgenauigkeit auslegen.

® Aufler(st)er Regelkreis leistet Fiihrungsgenauigkeit.
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6.4.2 Hohen- und Bahnazimutregelung

HC N K ®C H
’ ’ 1l ’ Flugzeug i
+
Xe D, Basisregler X
sy Kx — " » ——>

Abbildung 6.13: Hohen- und Bahnazimutregelung

Ky Der Hohenregler hat in dieser Kaskadenregelung keinen direkten Zugriff auf das
Hohenruder, sondern kommandiert einen Nicklagesollwert an den Basisregler der
Langsbewegung, der dann seinerseits iiber das Hohenruder in den Momentenhaus-
halt des Flugzeugs eingreift, um den Langsneigungswinkel entsprechend einzustellen.
Um stationare Fiihrungsgenauigkeit bei der Hohenregelung zu erreichen, kann der
Hohenregler als PI(D)-Regler ausgelegt werden.

v Der Bahnazimutregler regelt den Bahnazimut, indem er einen Sollwert fiir den
Héngewinkel an den Basisregler weitergibt. Alternativ zum Bahnazimut kann (z. B.
aus Verfligharkeitsgriinden) der Gierwinkel als Regelgroie verwendet werden.
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Empfehlungen

[8] eignet sich hervorragend als vorlesungsbegleitendes Lehrbuch, das in einer leicht ver-
standlichen Sprache anhand zahlreicher Beispiele die Grundlagen der Regelungstechnik
vertieft.

[9] beschreibt in etwas abstrakterer Form die klassischen Verfahren der Analyse und Syn-
these linearer kontinuierlicher Regelsysteme, wihrend [10] eine Einfiihrung in Zustands-
regelungen, digitale und nichtlineare Regelsysteme gibt.

Als reines praxisorientiertes kompaktes Nachschlagewerk kann [12] ein gutes Lehrbuch
zwar nicht ersetzen, wohl aber sinnvoll erganzen.

[11] spricht als recht knapp gehaltene Einfiihrung in die Benutzung von MATLAB und
Simulink den absoluten MATLAB-Anfinger an und kann mit seinen zahlreichen Ubungs-
aufgaben zu weiteren eigenen Experimenten anregen.

[7] beschreibt nicht nur die grundlegende blockorientierte Arbeitsweise mit Simulink son-
dern auch weiterfithrende Konzepte wie Callbacks, S-Functions, Animationen, ...

[4] ist das deutschsprachige Standardwerk der Flugregelung, das auf 1006 Seiten jede
Menge Hintergrundwissen auch zu den angrenzenden Disziplinen (Flugmechanik, Aero-
dynamik, Meteorologie, ... ) liefert. Etwas lastig ist dabei nur der Preis von fast 200 €.
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