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Nomenklatur

α Anstellwinkel

α Subjektiver Wichtungsfaktor

q̄ Staudruck

β Schiebewinkel

χ Bahnazimut

∆Z Quaternionenfehler

δ (t) Idealer Impuls (Dirac-Stoß)

δη Steuerknüppelausschlag (Ziehen)

δξ Steuerknüppelausschlag (nach rechts)

δζ Pedalwinkel

η Höhenruderausschlag

γ Bahnwinkel, Bahnneigungswinkel, Steigwinkel

= (z) Imaginärteil einer komplexen Zahl

L Laplace-Operator

L−1 Inverser Laplace-Operator

∇ Nabla-Operator

ω Kreisfrquenz

ω0 Eigenkreisfequenz

ωE Eckfrequenz

ωm Mittenfrequenz

Z Konjugierte Quaternion

< (z) Realteil einer komplexen Zahl

ρ Dichte (der Luft)
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σ Realteil der komplexen Frequenz

τ Zeit (als Integrationsvariable)

ε Infinitesimal kleine Größe

ε Winkel eines Pols zur imaginären Achse

Φ Hängewinkel, Querneigungswinkel, Rollwinkel

ϕ Phasenwinkel, Phasenverschiebung, Phase (einer komplexen Zahl)

Ψ Gierwinkel, Azimut

Θ Nickwinkel, Längsneigungswinkel

Ω Drehgeschwindigkeitsvektor

Φ Lagewinkelvektor (Eulerwinkelvektor)

A Systemmatrix, Dynamikmatrix

B Eingangsmatrix, Steuermatrix

C Ausgangsmatrix, Messmatrix

D Drehimpulsvektor

D Durchgriffsmatrix

f Vektordifferenzialgleichung

G Gewichts(kraft)vektor

g Vektorausgangsgleichung

I Trägheitstensor

Mfa Transformationsmatrix vom aerodynamischen ins flugzeugfeste Koordinaten-
system

Mfg Transformationsmatrix vom geodätischen ins flugzeugfeste Koordinatensys-
tem

Mkg Transformationsmatrix vom geodätischen ins bahnfeste Koordinatensystem

MΩ Quaternionendifferenzialgleichungsmatrix

n Quaternionendrehachsenvektor

P Impulsvektor

Q Momentenvektor

rF Schubvektorangriffspunkt

R (Resultierender) Kraftvektor
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s Positionsvektor (Richtung, Strecke)

u Eingangs(größen)vektor

V Geschwindigkeitsvektor

v Ausgangs(größen)vektor

x Zustands(größen)vektor

Ξ Quaternionendrehwinkel
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A Amplitude, Amplitudenverhältnis

A Auftrieb
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c Federkonstante

CA Auftriebsbeiwert

Cl Rollmomentenbeiwert

Cm Nickmomentenbeiwert

Cn Giermomentenbeiwert

CQ Querkraftbeiwert

CW Widerstandsbeiwert

CAα Derivativ (Auftrieb aufgrund des Anstallwinkels) usw.

CW0 Nullwiderstand

D Dämpfung

d (t) Rechteckimpuls

dB Dezibel

E Aerodynamische Krafteinheit

e (t) Regeldifferenz (Regelfehler, Regelabweichung)

emax Maximale Überschwingweite

F Kraft
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f Frequenz

f (t) Rampenantwort im Zeitbereich

Fc Sollschub

g Erdbeschleunigung

G (s) Übertragungsfunktion

g (t) Impulsantwort (Gewichtsfunktion) im Zeitbereich

G (z) z-Übertragungsfunktion

G0 Übertragungsfunktion des offenen Kreises

Gg Gesamtübertragungsfunktion, Führungsübertragungsfunktion

GM Mess(glied)übertragungsfunktion

GR Reglerübertragungsfunktion

GS Streckenübertragungsfunktion

GV Vorsteuerungsübertragungsfunktion

GV Vorwärtsübertragungsfunktion

Gz Störübertragungsfunktion

Gew Regelabweichung bei Führung

Gez Regelabweichung bei Störung

GSt Störgrößenaufschaltungsübertragungsfunktion

H (s) Sprungantwort (Übergangsfunktion) im Laplace-Bereich

h (t) Sprungantwort (Übergangsfunktion) im Zeitbereich

I Integralkriterium

i, j, k Imaginäre Einheiten (einer Quaternion)

Ix, Iy, Iz Trägheitsmoment um die jeweilige Achse

Ixz Deviationsmoment

K Verstärkungsfaktor

k Ganze Zahl

Kβ Schiebewinkelregler

Kχ Bahnazimutregler, Kursregler

KΦ Querlageregler
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KΘ Nicklageregler

KH Hilfsgröße

KH Höhenregler

KR Reglerverstärkung

KV Fahrtregler, Autothrottle

Kηq Nickdämpfer

Kξp Rolldämpfer

Kζr Gierdämpfer

KRkrit Kritische Verstärkung, Amplitudenreserve

L Rollmoment

lµ Bezugsflügeltiefe

M Nickmoment

m Masse

Ma Machzahl

N Giermoment

p Rollgeschwindigkeit

p∗A Nomierte Rollgeschwindigkeit usw.

Q Querkraft

q Nickgeschwindigkeit

r Betrag einer komplexen Zahl

r Dämpfungsfaktor

r Giergeschwindigkeit

r (t) Einheitsrampe

s Laplace-Variable, Bildvariable, komplexe Frequenz

S (s) Einheitssprung im Laplace-Bereich

s (t) Einheitssprung im Zeitbereich

T Abtastzeit

T Periodendauer

t Zeit
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tε Betrag der Regelabweichung nie mehr größer als ε

TD Differenziererzeitkonstante

TF Triebwerkszeitkonstante

Tg Ausgleichszeit

TI Integratorzeitkonstant

TN Bezugszeitkonstante

TN Nachstellzeit

TT Totzeitkonstante

Tu Verzugszeit

TV Vorhaltzeit

tan Anregelzeit

Tkrit Periodendauer der kritischen Schwingung

u Vorwärtsgeschwindigkeit

U (s) Eingangsgröße im Laplace-Bereich

u (t) Eingangsgröße im Zeitbereich

uk Eingangsgröße im z-Bereich

v Seitwärtsgeschwindigkeit

V (s) Ausgangsgröße im Laplace-Bereich

v (t) Ausgangsgröße im Zeitbereich

VA Fluggeschwindigkeit, Anströmgeschwindigkeit, aerodynamische Geschwindig-
keit, Fahrt

vk Ausgangsgröße im z-Bereich

W Widerstand

w Sinkgeschwindigkeit

w (t) Führungsgröße (Sollwert)

X x-Komponente des Kraftvektors (nach vorne)

x Zustandsgröße, Zustandsvariable

x x-Komponente des Positionsvektors (nach vorne)

x (t) Regelgröße (Istwert)
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Y y-Komponente des Kraftvektors (nach rechts)

y y-Komponente des Positionsvektors (nach rechts)

y (t) Stellgröße

Z Quaternion

Z z-Komponente des Kraftvektors (nach unten)

z Komplexe Zahl

z Unabhängige Variable der z-Übertragungsfunktion

z z-Komponente des Positionsvektors (nach unten)

z (t) Störgröße

Z0 Einheitsquaternion

ZD Einheitsdrehquaternion

ZΩ Bahndrehgeschwindigkeitsquaternion

Index A Aerodynamisch

Index a Flugwindfestes (aerodynamisches) Koordinatensystem

Index F Schub

Index f Flugzeugfestes (körperfestes) Koordinatensystem

Index g Erd(lot)festes (geodätisches) Koordinatensystem

Index K Bahn

Index k (Flug)bahnfestes Koordinatensystem

Index W Wind

PBZ Partialbruchzerlegung
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Teil I

Grundlagen der Regelungstechnik
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Kapitel 1

Einführung

1.1 Blockschaltbilder und Bezeichnungen

1.1.1 Normen

DIN 19221 Regelungstechnik und Steuerungstechnik

DIN 19225 Benennung und Einteilung von Reglern

DIN 19226 Regelungstechnik und Steuerungstechnik

VDI/VDE 3526 Benennungen für Steuer- und Regelschaltungen

1.1.2 Signalverknüpfungen

u

v
2

v
1

(a) Verzweigungspunkt:
v1 = v2 = u

-

u
1

u
2

v

(b) Additions- bzw.
Subtraktionsstelle:
v = u1 − u2

u
1

u
2

v

(c) Multiplikationsstelle:
v = u1 · u2

Abbildung 1.1: Signalverküpfungen

1.1.3 Blöcke

u(t) v(t)
vT + v = u
.

Abbildung 1.2: Differenzialgleichung

14



u(t) v(t)

Abbildung 1.3: Sprungantwort (Übergangsfunktion)

G(s) =
1

Ts + 1

U(s) V(s)

Abbildung 1.4: Übertragungsfunktion

1.1.4 Bezeichnungen

u Eingangsgröße Input variable

v Ausgangsgröße Output variable

w Führungsgröße (Sollwert) Reference input variable, command, set
value

x Regelgröße (Istwert) Control(led) variable

e
Regeldifferenz (Regelfehler,
Regelabweichung)

Error signal, control error, control
difference, deviation

y Stellgröße Correcting variable, manipulating variable

z Störgröße Disturbance

s
Laplace-Variable, Bildvariable,
komplexe Frequenz Complex frequency

G (s) Übertragungsfunktion Transfer function

Tabelle 1.1: Deutsche und englische Bezeichnungen der Regelungstechnik
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1.2 Steuerung und Regelung

1.2.1 Steuerung

w y x
Steuerung Strecke

Abbildung 1.5: Steuerung

• Offene Wirkungskette, keine Rückführung

• Kann nur bekannte Störungen kompensieren

• Kann nicht instabil werden

• Schnell

1.2.2 Regelung

ew y x
Regler Strecke

-

Abbildung 1.6: Regelung

• Geschlossener Regelkreis

• Kann auch unbekannte Störungen ausregeln

• Kann instabil werden

• Langsamer

16



1.3 Spezielle Anregungsfunktionen und Systemant-
worten

1.3.1 Sprung

s (t) =


1 für t > 0
0.5 für t = 0
0 für t < 0

s(t)

t

1

0.5

Abbildung 1.7: Einheitssprung

1.3.2 Rampe

r (t) =
t für t ≥ 0

0 für t < 0

r(t)

t

1

1

Abbildung 1.8: Einheitsrampe

1.3.3 Rechteckimpuls

d (t) =
1/ε für 0 ≤ t ≤ ε

0 sonst

d(t)

tε

1
ε A = 1

Abbildung 1.9: Rechteckimpuls
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1.3.4 Idealer Impuls (Dirac-Stoß)

δ (t) = lim
ε→0

d (t) =
∞ für t = 0

0 sonst

δ(t)

t

A = 1

Abbildung 1.10: Idealer Impuls
(Dirac-Stoß)

1.3.5 Sinus

x (t) = sinωt

x(t)

t
2π
ω

1

-1

Abbildung 1.11: Einheitssinus

1.3.6 Beziehung zwischen Rampe, Sprung und Impuls
∂
∂t−−−−→

∂
∂t−−−−→

r (t) s (t) δ (t)
←−−−−−∫

dt
←−−−−−∫

dt

1.3.7 Systemantworten

r(t) f(t)

s(t) h(t)

d(t) g(t)

System

Rampenantwort

Sprungantwort (Übergangsfunktion)

Impulsantwort (Gewichtsfunktion)

Abbildung 1.12: Systemantworten

18



1.4 Statisches und dynamisches Verhalten

u(t) v(t)
System

Abbildung 1.13: Allgemeines (statisches oder dynamisches) System

1.4.1 Statisches Verhalten (statische Kennlinie)

• Beispiel: idealer Messverstärker

• Veränderung der Ausgangsgröße nur, wenn sich die Eingangsgröße gerade ändert

• Keine Energiespeicher → keine Eigenbewegung (Eigendynamik)

• Beschreibung durch algebraische Gleichungen

1.4.2 Dynamisches Verhalten

• Beispiel: Pendel

• Veränderung der Ausgangsgröße, ohne dass sich die Eingangsgröße gerade ändert

• Interne Energiespeicher werden ge- und entladen→ Eigenbewegung (Eigendynamik)

• Beschreibung durch Differenzialgleichungen

u(t)

t

(a) Schar von Sprungein-
gängen

v(t)

t

(b) Schar von Sprungant-
worten

v∞

u∞

(c) Stationäre (statische)
nichtlineare Kennlinie

Abbildung 1.14: Dynamisches Verhalten

1.5 Lineares und nichtlineares Verhalten

Lineare Systeme sind in vieler Hinsicht angenehmer als nichtlineare Systeme. Sie lassen
sich im allgemeinen wesentlich einfacher analysieren, regeln und simulieren. Zur Überprü-
fung, ob ein allgemeines nichtlineares System der Form v = g (u) linear ist, werden zwei
Linearitätsbedingungen herangezogen, die beide erfüllt sein müssen:
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K

K

u

u

Lineares
System g( )

Lineares
System g( )

K.u g(K.u)

K.g(u)g(u)

Abbildung 1.15: Verstärkungsprinzip: g (K · u) != K · g (u)

u1

g( )u1u1

u + u1 2

u2

g( )u2u2

Lineares
System g( )

Lineares
System g( )

Lineares
System g( )

g(u + u )1 2

g(u ) + g(u )1 2

Abbildung 1.16: Überlagerungsprinzip: g (u1 + u2) != g (u1) + g (u2)

% „Wenn’s für eine Eingangsamplitude klappt, klappt’s immer.“

% Reihenfolge linearer Blöcke vertauschbar: g (h (u)) = h (g (u))

1.5.1 Lineare Blöcke

• Integrator

• Differenzierer

• Verstärker (Konstante)

• Summe

• Totzeit

• Zusammengesetzte Blöcke: P-T1, P-T2, PD-T1-Filter, PID-Regler, . . .

• Allgemeine Übertragungsfunktion

• Lineare Zustandsraumdarstellung

20



Kapitel 2

Lineare Systeme

2.1 Mechanischer Schwinger zweiter Ordnung

c

r

v, v, v, F
. ..

m

Abbildung 2.1: Mechanischer Schwinger zweiter Ordnung (v: Weg)

cv

Frv
.

m

mv
..

Abbildung 2.2: Freigeschnittener Schwinger zweiter Ordnung

Lineare inhomogene Differenzialgleichung zweiter Ordnung:

mv̈ + rv̇ + cv = F

Normalform:

v̈ + r

m
v̇ + c

m
v = F

m

21



Allgemeines System zweiter Ordnung:

v̈ + 2Dω0v̇ + ω2
0v = Kω2

0u

Eingangsgröße:

u = F

Eigenkreisfrequenz:

ω2
0 = c

m
⇒ ω0 =

√
c

m

Dämpfung:

2Dω0 = r

m
⇒ D = r

2mω0
= r

2m
√

c
m

= r

2
√
cm

Verstärkungsfaktor:

Kω2
0 = 1

m
⇒ K = 1

mω2
0

= 1
m c

m

= 1
c

u(t) v(t)
v + 2D v + = Kw

0
w w

0

2

0

2
v u

.. .

Abbildung 2.3: Blockschaltbild Schwinger zweiter Ordnung

2.1.1 Impulsantwort

Impuls als Eingangsgröße: u (t) = δ (t)

g(t)

t

D = 0.1

(a) D = 0.1

g(t)

t

D = 1

(b) D = 1

Abbildung 2.4: Impulsantwort g (t)
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2.1.2 Sprungantwort

Sprung als Eingangsgröße: u (t) = s (t)

h(t)

t

D = 0.1

(a) D = 0.1

h(t)

t

D = 1

(b) D = 1

Abbildung 2.5: Sprungantwort h (t)

2.2 Laplace-Transformation (eines P-T2)

Differenzialgleichung:

v̈ + 2Dω0v̇ + ω2
0v = Kω2

0u

Anfangswerte gleich null:

v(0) = v̇(0) = 0

DGl

G(s)

u(t) v(t)

U(s) V(s) = G(s).U(s)

1
2

3

4

Abbildung 2.6: Lösung einer Differenzialgleichung mittels Laplace-Transformation

Laplace-Transformation:

• der Eingangsfunktion: L{u (t)} = U (s)

• der Ausgangsfunktion: L{v (t)} = V (s)

• der ersten Ableitung der Ausgangsfunktion: L{v̇ (t)} = s · V (s)

• der zweiten Ableitung der Ausgangsfunktion: L{v̈ (t)} = s2 · V (s)

23



Transformierte Differenzialgleichung:

s2V (s) + 2Dω0sV (s) + ω2
0V (s) = Kω2

0U (s)

Übertragungsfunktion:

G (s) = V (s)
U (s) = Kω2

0
s2 + 2Dω0s+ ω2

0

2.2.1 Tabelle einiger Laplace-Transformationen

x (t) L{x (t)} = X (s)

δ (t) 1

s (t) = 1 1
s

r (t) = t 1
s2

e−at 1
s+a

e−at sinωt ω
(s+a)2+ω2

e−at cosωt s+a
(s+a)2+ω2

Tabelle 2.1: Die wichtigsten Laplace-Transformationen

2.2.2 Beispiel: Sprungantwort eines P-T2

Übertragungsfunktion:

G (s) = 1
s2 + s+ 1 (ω0 = 1, K = 1, D = 0.5)

Sprung:

L{s (t)} = S (s) = 1
s

Sprungantwort:

H (s) = G (s) · S (s) = 1
s2 + s+ 1 ·

1
s

Partialbruchzerlegung:

H (s) = As+B

s2 + s+ 1 + C

s

24



Gleiche Nenner:

1
(s2 + s+ 1)s = (As+B)s+ C(s2 + s+ 1)

(s2 + s+ 1)s

Koeffizientenvergleich im Zähler:

s0 : 1 = C ⇒ C = 1
s1 : 0 = B + C = B + 1 ⇒ B = −1
s2 : 0 = A+ C = A+ 1 ⇒ A = −1

Resultat der Partialbruchzerlegung:

H (s) = 1
s
− s+ 1
s2 + s+ 1

Quadratische Ergänzung:

H (s) = 1
s
− s+ 1(

s+ 1
2

)2
+ 1− 1

4

= 1
s
− s+ 1(

s+ 1
2

)2
+ 3

4

Vergleich mit Laplace-Transformationstabelle (Tabelle 2.1):

a = 1
2 ω =

√
3
4 =

√
3

2

Zähler durch Aufspaltung an Tabelle anpassen:

H (s) = 1
s
−

s+ 1
2(

s+ 1
2

)2
+ 3

4

−
1
2(

s+ 1
2

)2
+ 3

4

Dritten Summanden auch an Tabelle anpassen:

H (s) = 1
s
−

s+ 1
2(

s+ 1
2

)2
+ 3

4

−
1
2

√
3
4

√
4
3(

s+ 1
2

)2
+ 3

4

Bereit zur Rücktransformation:

H (s) = 1
s
−

s+ 1
2(

s+ 1
2

)2
+ 3

4

− 1√
3

√
3
4(

s+ 1
2

)2
+ 3

4

Sprungantwort im Zeitbereich:

h (t) = L−1 {H (s)} = 1− e− 1
2 t cos

√
3
4t−

1√
3
e− 1

2 t sin
√

3
4t (2.1)

25



Periodendauer:

ω =
√

3
4 = 2πf = 2π

T
⇒ T = 2π√

3
4

= 4π√
3
≈ 7.2

0 2 4 8 106

0.5

0.0

1.0

T ~ 7.2~

t

h(t)

Abbildung 2.7: Sprungantwort eines Systems zweiter Ordnung (D = 0.5)

2.3 Grenzwertsätze

Anfangswertsatz:

f (t = 0) = lim
t→0

f (t) = lim
s→∞

s · F (s)

Endwertsatz:

lim
t→∞

f (t) = lim
s→0

s · F (s)

2.3.1 Beispiel: Sprungantwort eines P-T2

Allgemein (Endwertsatz):

lim
t→∞

h (t) = lim
s→0

s ·H (s) = lim
s→0

s ·G (s) · 1
s

= lim
s→0

G (s)

Speziell (P-T2):

lim
t→∞

h (t) = lim
s→0

G (s) = lim
s→0

Kω2
0

s2 + 2Dω0s+ ω2
0

= Kω2
0

ω2
0

= K
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2.4 Pole der Übertragungsfunktion

Beispiel: System zweiter Ordnung (P-T2)
Übertragungsfunktion:

G (s) = Kω2
0

s2 + 2Dω0s+ ω2
0

Pole sind Nullstellen des Nenners:

s2 + 2Dω0s+ ω2
0 = 0

Zwei (reelle oder konjugiert komplexe) Pole:

s1,2 = −Dω0 ±
√
D2ω2

0 − ω2
0 = −Dω0 ± ω0

√
D2 − 1

Fallunterscheidung:

|D| > 1 s1,2 = −Dω0 ± ω0
√
D2 − 1 Zwei reelle Pole

|D| < 1 s1,2 = −Dω0︸ ︷︷ ︸
σ

±jω0
√

1−D2︸ ︷︷ ︸
ω

Konjugiert komplexes Polpaar

D = 0 s1,2 = ±jω0 Konjugiert komplexes Polpaar auf der
imaginären Achse

D = 1 s1,2 = −ω0 Reeller Doppelpol in der linken
Halbebene

D = −1 s1,2 = ω0 Reeller Doppelpol in der rechten
Halbebene (instabil)

Tabelle 2.2: Lage der Pole in Abhängigkeit von der Dämpfung

jw

s

stabil instabil

D < 0
D = 0

D = 1
D < 1

D > 1
w

0 e

s

s

Abbildung 2.8: Polverteilung eines Systems zweiter Ordnung
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Stabilität: „Ein System mit mindestens einem Pol in der rechten Halbebene ist instabil.“
Eigenfrequenz ist Abstand vom Ursprung:

|σ|2 + ω2 = |−Dω0|2 +
(
ω0
√

1−D2
)2

= D2ω2
0 + ω2

0

(
1−D2

)
= ω2

0

„Je näher am Ursprung, desto langsamer.“
Zusammenhang zwischen Winkel ε und Dämpfung D (im zweiten Quadranten):

sin ε = |σ|
ω0

= Dω0

ω0
= D

„Je näher an der imaginären Achse, desto schlechter gedämpft“

2.5 Frequenzgang

Sinusanregung:

u (t) = Au sinωt

u(t) = A .sin( t)u w v(t) = A .sin( t +v w j)
Lineares System

Abbildung 2.9: Sinusanregung und -antwort eines linearen Systems

Stationäre Sinusantwort (Einschwingvorgang abgeschlossen) hat:

• Gleiche Frequenz ω

• Andere Amplitude Av

• Andere Phase (Phasenverschiebung ϕ)

Au

Av

t

u(t)

v(t)

j

j

Abbildung 2.10: Sinusanregung und -antwort eines linearen Systems
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Der Frequenzgang setzt sich aus dem Amplitudengang (Verhältnis von Aus- zu Eingangs-
amplitude über der Frequenz) und dem Phasengang (Phasenverschiebung in Abhängigkeit
von der Frequenz) zusammen:

A
v

A
u

ω

Abbildung 2.11: Amplitudengang

ω

ϕ

Abbildung 2.12: Phasengang

2.6 Bodediagramm und Nyquistortskurve

2.6.1 Eigenschaften komplexer Zahlen

Komplexe Zahl in arithmetischer Darstellungsform:

z = a+ jb

Komplexe Zahl in exponentieller Darstellungsform:

z = r · ejϕ

29



j.Im(z)

Re(z)a

j.b z
r

ϕ

Abbildung 2.13: Punktdarstellung der komplexen Zahl z

Betrag:

|z| = r =
√
a2 + b2

Phase:

ϕ = arctan
(
b

a

)

Realteil:

< (z) = a = r · cos (ϕ)

Imaginärteil:

= (z) = b = r · sin (ϕ)

Quotient zweier komplexer Zahlen:

zQ = r1 · ejϕ1

r2 · ejϕ2
= a+ jb
c+ jd

Betrag ist gleich dem Quotienten der Einzelbeträge:

|zQ| =
r1

r2
=
√
a2 + b2
√
c2 + d2

Phase ist gleich der Differenz der Einzelphasen:

ϕQ = ϕ1 − ϕ2 = arctan
(
b

a

)
− arctan

(
d

c

)

Real- und Imaginärteil ergeben sich nach konjugiert komplexem Erweitern:

zQ = a+ jb
c+ jd = a+ jb

c+ jd ·
c− jd
c− jd = ac− ajd+ jbc− jbjd

cc− cjd+ jdc− jdjd = ac+ bd+ j(bc− ad)
c2 + d2

Realteil:
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< (zQ) = ac+ bd

c2 + d2

Imaginärteil:

= (zQ) = bc− ad
c2 + d2

2.6.2 Logarithmische Skalierung (Dezibel)

Amplitudengang Doppelt-logarithmische Skalierung: logarithmische Frequenz und Am-
plitude in Dezibel

Phasengang Einfach-logarithmische Skalierung: nur logarithmische Frequenz

Umrechnung Dezibel:

• A [dB] = 20 · log10A

• A = 10
A[dB]

20

A[dB] 0 20 -40 80 6 3 −∞

A 1 10 0.01 10000 ≈ 2 ≈
√

2 0

Tabelle 2.3: Einige Umrechnungsbeispiele

2.6.3 Beispiel: System zweiter Ordnung (P-T2)

Übertragungsfunktion:

G (s) = 0.1
s2 + s+ 1

Frequenzgang:

G (jω) = 0.1
(jω)2 + jω + 1

= 0.1
(1− ω2) + jω (2.2)

= 0.1
(1− ω2) + jω ·

(1− ω2)− jω
(1− ω2)− jω

= 0.1 · (1− ω2 − jω)
(1− ω2)2 + ω2

(2.3)
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Aus Gleichung (2.2) folgen der Amplitudengang und der Phasengang:
Amplitudengang:

A (jω) = |G (jω)| = 0.1√
(1− ω2)2 + ω2

Phasengang:

ϕ (ω) = − arctan
(

ω

1− ω2

)

0

-20

-40

-60

-80

-100

1 10 100

ω

0°

-90°

-180°

ω

ϕ

Amplitudengang

Phasengang

A

dB

Abbildung 2.14: Bodediagramm: Amplitudengang in Dezibel und Phasengang über loga-
rithmischer Frequenz

Aus Gleichung (2.3) folgen der Realteil und der Imaginärteil:
Realteil:

< (G (jω)) = 0.1(1− ω2)
(1− ω2)2 + ω2

Imaginärteil:

= (G (jω)) = −0.1ω
(1− ω2)2 + ω2
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j Im(G).

Re(G)

0.1

-0.1j

ω = 0

ω = 1

ω
A

ϕ
ω ∞=

Abbildung 2.15: Nyquistortskurve: Imaginärteil über Realteil des Frequenzganges mit
Frequenz als Parameter der Kurve

2.7 P-Glied

Andere Bezeichnungen: P-Regler, Verstärker
Beispiel: (Idealer) Audio-Verstärker
„Differenzialgleichung“ im Zeitbereich:

v (t) = K · u (t)

„Differenzialgleichung“ im Bildbereich:

V (s) = K · U (s)

Übertragungsfunktion:

G (s) = V (s)
U (s) = K

Pole: keine
Nullstellen: keine
Frequenzgang:

G (jω) = K

Amplitudengang:

A = |G (jω)| = K
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Phasengang:

ϕ = 0

ω

K

A

ω

ϕ

(a) Bodediagramm

j.Im(G)

Re(G)

K
G

(b) Nyquistortskurve

Abbildung 2.16: Bodediagramm und Nyquistortskurve eines P-Glieds

Sprungantwort im Bildbereich:

H (s) = G (s) · L {s (t)} = G (s) · 1
s

= K · 1
s

Sprungantwort im Zeitbereich (vergleiche Tabelle 2.1):

h (t) = L−1 {H (s)} = L−1
{
K · 1

s

}
= K

K

h(t)

t

(a) Sprungantwort

u vK

(b) Blockschaltbild

Abbildung 2.17: Sprungantwort und Blockschaltbild eines P-Glieds

2.8 P-T1

Andere Bezeichnungen: Tiefpass 1. Ordnung, Verzögerungsglied 1. Ordnung
Beispiel: Aufladung eines Kondensators C über einen Widerstand R
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U
0

U
C

R

C

Abbildung 2.18: Beispiel für ein P-T1

Differenzialgleichung im Zeitbereich:

T v̇ (t) + v (t) = K · u (t)

Differenzialgleichung im Bildbereich:

V (s) · (Ts+ 1) = K · U (s)

Übertragungsfunktion:

G (s) = V (s)
U (s) = K

Ts+ 1

Pole:

Ts+ 1 = 0 ⇒ s = − 1
T

Nullstellen: keine

j.Im(s)

Re(s)

s

1

T

Abbildung 2.19: Pole (und Nullstellen) eines (stabilen) P-T1

Frequenzgang:

G (jω) = K

jωT + 1

Amplitudengang:

A (ω) = |G (jω)| = K√
(ωT )2 + 1

Phasengang:

ϕ (ω) = − arctanωT
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w

j

0°

-45°

-90°

A

w

K

1
T

-20dB/Dekade

0 dB

Abbildung 2.20: Bodediagramm eines P-T1 mit Eckfrequenz ωe = 1/T

ω

ω = 0

ω ∞=

j.Im(G)

Re(G)

K

G

ω = 1

T

A

ϕ

Abbildung 2.21: Nyquistortskurve eines P-T1

Sprungantwort im Bildbereich:

H (s) = G (s) · 1
s

= K

Ts+ 1 ·
1
s

= · · ·PBZ · · · = K

s
− KT

Ts+ 1 = K

s
− K

s+ 1
T

Sprungantwort im Zeitbereich (vergleiche Tabelle 2.1):

h (t) = L−1 {H (s)} = K −Ke− t
T = K

(
1− e− t

T

)

K

h(t)

tT

0.63K

(a) Stabil

T<0

-T

K(1-e)

=

-1.7 K

h(t)

t

(b) Instabil

Abbildung 2.22: Sprungantwort eines P-T1
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u vK, T

Abbildung 2.23: Blockschaltbild eines P-T1

2.9 P-T2

Andere Bezeichnungen: Tiefpass 2. Ordnung, Verzögerungsglied 2. Ordnung, Schwinger
2. Ordnung
Beispiel: Feder-Masse-Schwinger (Abschnitt 2.1)
Differenzialgleichung im Zeitbereich:

v̈ (t) + 2Dω0v̇ (t) + ω2
0v (t) = Kω2

0u (t)

Differenzialgleichung im Bildbereich:

V (s) ·
(
s2 + 2Dω0s+ ω2

0

)
= Kω2

0U (s)

Übertragungsfunktion:

G (s) = V (s)
U (s) = Kω2

0
s2 + 2Dω0s+ ω2

0

Pole: vergleiche Abschnitt 2.4
Nullstellen: keine
Frequenzgang:

G (jω) = Kω2
0

(ω2
0 − ω2) + 2Dω0ωj

Amplitudengang:

A (ω) = |G (jω)| = Kω2
0√

(ω2
0 − ω2)2 + (2Dω0ω)2

Phasengang:

ϕ (ω) = − arctan
(

2Dω0ω

ω2
0 − ω2

)
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A

ω
ω0 10ω00.1ω0

D = 0

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

D = 2

ω

ϕ

0°

-90°

-180°

K

K -

40 dB

Abbildung 2.24: Bodediagramm eines P-T2 bei unterschiedlichen Dämpfungen
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j.Im(G)

Re(G)K

G

ω = 2ω0

ω = 1ω0

ω = 0.5ω0

-j.K

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

D = 2

Abbildung 2.25: Nyquistortskurve eines P-T2 bei unterschiedlichen Dämpfungen

Sprungantwort (vergleiche Gleichung (2.1)):

h (t) = K

(
1− e−Dω0t

(
cos

(√
1−D2ω0t

)
+ D√

1−D2
sin

(√
1−D2ω0t

)))
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h(t)

t

K

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

D = 2

Abbildung 2.26: Sprungantwort eines P-T2 bei unterschiedlichen Dämpfungen

vu vK, ,Dw
0

Abbildung 2.27: Blockschaltbild eines P-T2

2.10 I-Glied

Andere Bezeichnungen: Integrator, Energiespeicher
Beispiel: Wasserstand in einem Behälter

u

v

Abbildung 2.28: Beispiel für ein I-Glied

Integralgleichung im Zeitbereich:

v (t) = 1
TI

t∫
0

u (τ) dτ + v (t = 0)

Differenzialgleichung im Zeitbereich:

v̇ (t)TI = u (t)

Differenzialgleichung im Bildbereich:
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V (s) s · TI = U (s)

Übertragungsfunktion:

G (s) = V (s)
U (s) = 1

TI · s

(
= KI

s
mit KI = 1

TI

)

Pole:

TIs = 0 ⇒ s1 = 0

Nullstellen: keine

s
jω

σ

Abbildung 2.29: Pole (und Nullstellen) eines I-Gliedes

Frequenzgang:

G (jω) = 1
TI jω

= −j 1
ωTI

= 1
ωTI

e−jπ2

Amplitudengang:

A (ω) = |G (jω)| = 1
ωTI

Phasengang:

ϕ (ω) = arctan
− 1
ωTI

0 = − arctan∞ = −π2
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A

ω

-20 dB/Dek

TI

1
0 dB

ϕ

ω0°

-90°

(a) Bodediagramm

ω

j.Im(G)

Re(G)

G

(b) Nyquistortskurve

Abbildung 2.30: Bodediagramm und Nyquistortskurve eines I-Glieds

Sprungantwort im Bildbereich:

H (s) = G (s) 1
s

= 1
TIs

1
s

= 1
TIs2

Sprungantwort im Zeitbereich:

h (t) = L−1 {H (s)} = L−1
{ 1
TIs2

}
= t

TI
= 1
TI
t

t

h(t)

1

TI

(a) Sprungantwort

vu vT
I

(b) Blockschaltbild

Abbildung 2.31: Sprungantwort und Blockschaltbild eines I-Glieds

2.11 D-Glied

Andere Bezeichnungen: Differenzierer
Beispiel: Drehwinkel der Tachonadel ist die Ableitung des Radwinkels:

ϕTacho = ϕ̇Rad
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Tacho
j

Rad
j

Tacho

Abbildung 2.32: Beispiel für ein D-Glied

Differenzialgleichung im Zeitbereich:

v (t) = TDu̇ (t)

Differenzialgleichung im Bildbereich:

V (s) = TDsU (s)

Übertragungsfunktion:

G (s) = V (s)
U (s) = TDs

Pole: keine
Nullstellen:

TDs = 0 ⇒ s1 = 0

sjω

σ

Abbildung 2.33: (Pole und) Nullstellen eines D-Gliedes

Frequenzgang:

G (jω) = jωTD = ωTDejπ2

Amplitudengang:

A(ω) = |G(jω)| = ωTD

Phasengang:

ϕ(ω) = arctan ωTD0 = arctan∞ = π

2
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A

ω

20 dB/Dek

T
D

1
0 dB

ϕ

ω0°

90°

(a) Bodediagramm

ω

j.Im(G)

Re(G)

G

(b) Nyquistortskurve

Abbildung 2.34: Bodediagramm und Nyquistortskurve eines D-Glieds

Sprungantwort im Bildbereich:

H (s) = G (s) 1
s

= TDs
1
s

= TD

Sprungantwort im Zeitbereich (vergleiche Tabelle 2.1):

h (t) = L−1 {H (s)} = L−1 {TD} = TDδ (t) (Dirac-Stoß)

h(t)

t

(a) Sprungantwort

vu v
T

D

(b) Blockschaltbild

Abbildung 2.35: Sprungantwort und Blockschaltbild eines D-Glieds

2.12 PID-Glied

Andere Bezeichnungen: PID-Regler
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u vT
I

T
D

K

Abbildung 2.36: Parallelschaltung von P-Glied, I-Glied und D-Glied

Übertragungsfunktion:

G (s) = K + 1
TIs

+ TDs = KTIs+ 1 + TDTIs
2

TIs

mit:

TI = TN
K

und TD = TVK

G (s) =
K TN

K
s+ 1 + TVK

TN
K
s2

TN
K
s

= K
TNs+ 1 + TV TNs

2

TNs
= K

(
1 + 1

TNs
+ TV s

)

mit:

TN : Nachstellzeit und TV : Vorhaltzeit

u vT
N

T
V

K

1

Abbildung 2.37: Gerätenahe Darstellung eines PID-Gliedes
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Pole:

s1 = 0

Nullstellen:

TV TNs
2 + TNs+ 1 = 0 ⇒ · · · ⇒ s1,2 = ωE1,2

sjω

σω
E1

ω
E2

Abbildung 2.38: Pole und Nullstellen eines PID-Gliedes

Frequenzgang:

G (jω) = K + 1
jωTI

+ jωTD = K +
( −1
ωTI

+ ωTD

)
j

Schnittpunkt mit der 0-Grad-Achse:

ϕ = 0 ⇒ Im = 0 ⇒ −1
ωTI

+ ωTD = 0 ⇒ 1
ωTI

= ωTD ⇒

ωm =
√

1
TI · TD

=
√√√√ 1

TN
K
· TVK

=
√

1
TN · TV
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A





-20 dB/Dek

TI TD

1 1E1

m

20 dB/Dek

E2

90°

0°

-90°



(a) Bodediagramm

ωm

j.Im(G)

Re(G)

G

K

ω

(b) Nyquistortskurve

Abbildung 2.39: Bodediagramm und Nyquistortskurve eines PID-Glieds

h(t)

tTN

K

2K

-TN

Steigung

1

TI

K

TN

=

(a) Sprungantwort

vu vK,T ,T
I D

(b) Blockschaltbild

Abbildung 2.40: Sprungantwort und Blockschaltbild eines PID-Glieds

2.13 Totzeit

Andere Bezeichnungen: Laufzeit
Beispiel: Förderband

u
v

Abbildung 2.41: Förderband als Beispiel für eine Totzeit
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Übertragungsfunktion:

G (s) = e−sTT

Pole: keine
Nullstellen: keine
Frequenzgang:

G (jω) = e−jωTT

Amplitudengang:

A (ω) = |G (jω)| = 1

Phasengang:

ϕ (ω) = −ωTT

A

ω

0 dB

ϕ

ω
-57°

1

T
T

(a) Bodediagramm

j.Im(G)

Re(G)

G

ω = 0

1

ω

j

(b) Nyquistortskurve

Abbildung 2.42: Bodediagramm und Nyquistortskurve einer Totzeit

h(t)

tT
T

1

(a) Sprungantwort

u vTT

(b) Blockschaltbild

Abbildung 2.43: Sprungantwort und Blockschaltbild einer Totzeit
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2.14 Zustandsraumdarstellung

Differenzialgleichung eines Systems zweiter Ordnung:

v̈ + 2Dω0v̇ + ω2
0v = Kω2

0u

Einführung von 2 Zustandsvariablen:

x1 = v (Weg)
x2 = v̇ (Geschwindigkeit)

1. Differenzialgleichung:

ẋ1 = x2

2. Differenzialgleichung:

ẋ2 + 2Dω0x2 + ω2
0x1 = Kω2

0u

ẋ2 = −ω2
0x1 − 2Dω0x2 +Kω2

0u

Matrixschreibweise:

[
ẋ1
ẋ2

]
=
[

0 1
−ω2

0 −2Dω0

]
︸ ︷︷ ︸

A

[
x1
x2

]
+
[

0
Kω2

0

]
︸ ︷︷ ︸
B=b

u

Vektordifferenzialgleichung im Zustandsraum:

ẋ = A · x+B · u

Vektorausgangsgleichung:

v = C · x+D · u

Ausgangsgleichung in expliziter Form:

v =
[
1 0

]
︸ ︷︷ ︸
C=cT

[
x1
x2

]
+
[
0
]

︸︷︷︸
D=d

u
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2.14.1 Blockschaltbild der Zustandsraumdarstellung

! „1 Integrator pro Zustand“

! „Zustandsgröße am Ausgang des Integrators“

! „Differenzialgleichung am Eingang des Integrators modellieren“

Kw
0

2

2Dw
0

u

w
0

2

vx
1

x
1

.
x

2

.
x

2

- -

Abbildung 2.44: Blockschaltbild eines Schwingers zweiter Ordnung
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Kapitel 3

Reglerauslegung

3.1 Stabilität

3.1.1 BIBO-Stabilität (Bounded Input Bounded Output)

„Stabil, wenn ein begrenztes Eingangssinal zu einem begrenzten Ausgangssignal führt“

Beispiel: Sprungantwort eines Integrators

h(t)

t

s(t)

Abbildung 3.1: Sprungantwort eines Integrators

Ergebnis: Integrator ist nicht stabil.

3.1.2 Asymptotische Stabilität

• Stabil, wenn die Impulsantwort asymptotisch auf Null abklingt

• Instabil, wenn die Impulsantwort gegen unendlich geht

• Grenzstabil, wenn die Impulsantwort einen endlichen Wert nicht überschreitet
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Beispiel: Impulsantwort eines Integrators

g(t)

t

d(t)

Abbildung 3.2: Impulsantwort eines Integrators

Ergebnis: Integrator ist grenzstabil.

Beispiel: Impulsantwort eines doppelten Integrators

g(t)

t

d(t)

Abbildung 3.3: Impulsantwort eines doppelten Integrators

Ergebnis: Doppelter Integrator ist instabil.

3.1.3 Grundlegendes Stabilitätskriterium

• Stabil, wenn die Übertragungsfunktion nur Pole in der linken Halbebene besitzt

• Instabil, wenn mindestens ein Pol in der rechten Halbebene liegt oder wenn min-
destens ein mehrfacher Pol auf der Imaginärachse liegt

• Grenzstabil, wenn kein Pol in der rechten Halbebene liegt, keine mehrfachen Pole
auf der Imaginärachse vorhanden sind, sich aber mindestens ein einfacher Pol auf
der Imaginärachse befindet

Beispiel: Allgemeines System zweiter Ordnung

G (s) = 1
s2 + a1s+ a0

⇒ s1,2 = . . .
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s
jw

s

(a) Stabil, nicht
schwingfähig

jw

s

s

(b) Instabil,
nicht schwing-
fähig

s
jw

s

(c) Instabil,
nicht schwing-
fähig

jw

s

s

(d) Instabil,
doppelter
Integrator

jw

s

s

(e) Stabil,
schwingfähig

jw

s

s

(f) Instabil,
schwingfähig

jw

s

s

(g) Grenzstabil,
ungedämpfter
Schwinger

jw

s

s

(h) Grenzstabil,
verzögerter In-
tegrator

Abbildung 3.4: Polverteilungen von stabilen und instabilen Systemen

3.2 Regelkreis

GR GS

G
M

-

w e
y x

r

Abbildung 3.5: Allgemeiner Regelkreis

„Vom Ausgang rückwärts bis zu allen Eingängen, bzw. bis zu der Ausgangsgröße selbst“:

x = GS · y = GS ·GR · e = GS ·GR · (w − r) = GS ·GR · (w −GM · x)

Sortieren:

x · (1 +GS ·GR ·GM) = GS ·GR · w

Gesamtübertragungsfunktion:

Gg = x

w
= GS ·GR

1 +GS ·GR ·GM

= GV

1 +G0

Vorwärtsübertragungsfunktion:
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GV = GS ·GR

Übertragungsfunktion des offenen Kreises:

G0 = GS ·GR ·GM

3.2.1 Beispiel

10s+1

1

s + 1

1

w x

-

K
R

Abbildung 3.6: Beispiel eines einfachen Regelkreises

Gesamtübertragungsfunktion:

Gg = GV

1 +G0
=

KR · 1
10s+1

1 +KR · 1
10s+1 ·

1
s+1

= KR (s+ 1)
(10s+ 1) (s+ 1) +KR

Pole:

10s2 + 10s+ s+ 1 +KR = 0

Normalform:

s2 + 11
10s+ 1 +KR

10 = 0

Zwei (reelle oder konjugiert komplexe) Pole:

s1,2 = −11
20 ±

√(11
20

)2
− 1 +KR

10

Für die spezielle Reglerverstärkung KR = 1:

s1,2 = −11
20 ±

√(11
20

)2
− 2

10

ergeben sich zwei reelle (stabile) Pole:
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s1 = −0.2 und s2 = −0.87

Für die spezielle Reglerverstärkung KR = 10:

s1,2 = −11
20 ±

√(11
20

)2
− 11

10

ergeben sich zwei konjugiert komplexe (stabile) Pole:

s1,2 = −0.55± 0.89j

0.2j

1.0j

-0.2-0.87

K =1R

K =10R

jω

σ

s

stabil

Abbildung 3.7: Pole eines einfachen Regelkreises in Abhängigkeit von der Reglerverstär-
kung

3.3 Nyquistkriterium

Vorüberlegung:

Mikro BoxVerstärker

“Rückkopplung” ?

Abbildung 3.8: Wann wird der akustische Kreis instabil?

Rückkopplung nur, wenn:

1. Verstärkung groß genug (> 1) und

2. Mitkopplung vorhanden (Phasenverschiebung = n · 2π)
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Regelkreis:

GR GS

G
M

-

Abbildung 3.9: Allgemeiner Regelkreis

Übertragungsfunktion des offenen Kreises:

G0 = GR ·GS ·GM

Kritischer Punkt:

A = |G0| = 1 und ϕ = ∠G0 = −π

3.3.1 Beispiel

P-Regler

GR = KR

P-T2-Strecke:

GS = 0.1
s2 + s+ 1

P-T1-Messglied:

GM = 1
0.1s+ 1

KR

1

0.1s + 1

0.1

s + s + 1
2

-

Abbildung 3.10: Blockschaltbild eines Regelkreises mit P-Regler, P-T2-Strecke und P-T1-
Messglied
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Offener Kreis:

G0 = GR ·GS ·GM = KR ·
0.1

s2 + s+ 1 ·
1

0.1s+ 1

AdB

0

-20

-40

-60

-80

-100

-120

1 10 100 1000

K = 40 dBR krit

GS

ωG
M

GS

G
0

G
0

G
M

0°

-90°

-180°

-270°

(K = 1)
R

(K = 1)
R

ω

ϕ

Abbildung 3.11: Bodediagramm des offenen Kreises (G0)

Bis 0 dB hochschieben (Amplitudenreserve):

KRkrit ≈ 40 dB = 100 (geschlossener Kreis grenzstabil)
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j Im( ). G0

Re( )G0

-0.01 0.1-1

kritischer
Punkt

-0.1j

K = 1R

K = 100R krit

ω = 0

ω=1

Abbildung 3.12: Nyquistortskurve des offenen Kreises (G0)

Vereinfachtes Nyquistkriterium an der Nyquistortskurve des offenen Kreises: „Kritischer
Punkt (-1) muss links liegen“, dann ist der geschlossene Kreis Gg stabil! (Voraussetzung:
stabiler offener Kreis plus maximal zwei Integratoren)

3.3.2 Zwei Wege zur Stabilitätsuntersuchung des Regelkreises

1. Übertragungsfunktion des geschlossenen Kreises berechnen und „Grundlegendes
Stabilitätskriterium“ am geschlossenen Kreis anwenden (Pole des geschlossenen Krei-
ses in der linken Halbebene)

2. Übertragungsfunktion des offenen Kreises (G0 = GRGSGM) berechnen und Ny-
quistkriterium anwenden

3.4 Reglerentwurf

Drei (einander teilweise widersprechende) Forderungen:

1. Stabilität

2. Geschwindigkeit

3. Geringe Regelabweichung
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z

x

G
S

w e
GR GS1 GS2

y

-

Abbildung 3.13: Allgemeiner Regelkreis mit Störgröße und geteilter Strecke

Übertragungsfunktion des offenen Kreises:

G0 = GR ·GS1 ·GS2

Führungsübertragungsfunktion:

Gg = x

w
= G0

1 +G0
(möglichst → 1)

Störübertragungsfunktion:

Gz = x

z
= GS2

1 +G0
(möglichst → 0)

Regelabweichung bei Führung:

Gew = e

w
= 1

1 +G0
(möglichst → 0)

Regelabweichung bei Störung:

Gez = e

z
= − GS2

1 +G0
(möglichst → 0)

3.4.1 Beispiel: P-T3

GS1 = 1
s+ 1

GS2 = 2
s2 + s+ 1

P-Regler:

GR = KR

Übertragungsfunktion des offenen Kreises:
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G0 = 2KR

(s+ 1) (s2 + s+ 1)

Übertragungsfunktion des geschlossenen Kreises:

Gg = G0

1 +G0
=

2KR
(s+1)(s2+s+1)

1 + 2KR
(s+1)(s2+s+1)

= 2KR

(s+ 1) (s2 + s+ 1) + 2KR

Gute Führung:

KR →∞ ⇒ Gg → 1

Aber: wenn KR zu groß ⇒ Regelkreis instabil.
Stationäre Regelabweichung:

Gew = 1
1 +G0

= 1
1 + 2KR

(s+1)(s2+s+1)
= (s+ 1) (s2 + s+ 1)

(s+ 1) (s2 + s+ 1) + 2KR

geringe Regelabweichung:

KR →∞ ⇒ Gew → 0

Aber: s. o.
Grenzwertsatz der Laplace-Transformation:

lim
t→∞

h (t) = lim
s→0

G (s)

Führungssprung:

w = s (t)

Stationäre Regelabweichung:

lim
t→∞

e = e∞ = lim
s→0

Gew

e∞ = lim
s→0

(s+ 1) (s2 + s+ 1)
(s+ 1) (s2 + s+ 1) + 2KR

= 1
1 + 2KR

Erhöhung der Reglerverstärkung verringert die stationäre Regelabweichung:

KR ↑ ⇒ e∞ ↓

Bei Verwendung eines I-Reglers:
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GR = 1
TI · s

Übertragungsfunktion des offenen Kreises:

G0 = 2
TIs (s+ 1) (s2 + s+ 1)

Regelabweichung bei Führung:

Gew = 1
1 +G0

= 1
1 + 2

TIs(s+1)(s2+s+1)
= TIs (s+ 1) (s2 + s+ 1)
TIs (s+ 1) (s2 + s+ 1) + 2

Stationäre Regelabweichung:

e∞ = lim
s→0

Gew = TI0 (0 + 1) (02 + 0 + 1)
TI0 (0 + 1) (02 + 0 + 1) + 2 = 0

2 = 0

Keine stationäre Regelabweichung bei I-Regler (Nachteil: langsamer, Destabilisierung)

3.5 Gütekriterien

h(t)

tt50 tan tmax tε

100%

50%

0%

Tu Tg

emax 2εWende-
tangente

Abbildung 3.14: Sprungantwort (Führung)

emax Maximale Überschwingweite

tmax emax tritt auf.

Tu Verzugszeit (Wendetangente ∩ 0 %)

Tg Ausgleichszeit (Wendetangente ∩ 0 % ∩ 100 %)

tan Anregelzeit (Kurve ∩ 100 %)
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tε Betrag der Regelabweichung nie mehr größer als ε (z. B. t3 %)

h(t)

ttε

emax

2ε

Abbildung 3.15: Sprungantwort (Störung)

Kostenfunktion:

K = K1 · tan +K2 · tε +K3 · emax +K4 · · · = Minimum ↓

⇒ Ki willkürlich wählen ⇒ Kompromiss

3.5.1 Integralkriterien

I = Min ↓

Lineare Regelfläche:

I =
∞∫
0

e (t) · dt (e > 0)

Betragslineare Regelfläche:

I =
∞∫
0

|e (t)| · dt (umständlich)

Quadratische Regelfläche:

I =
∞∫
0

e2 (t) · dt (analytische Berechnung)

Zeitbeschwerte quadratische Regelfläche:
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I =
∞∫
0

e2 (t) · t · dt (Dauer der Regelabweichung)

Stellaufwand:

I =
∞∫
0

(
e2 (t) + α · y2 (t)

)
· dt (α: subjektiver Wichtungsfaktor)

3.6 Regleroptimierung mit Simulation

Optimierer
(Ingenieur)

e GR GS

y

-

(e)
2

(y)
2

a

Abbildung 3.16: Regleroptimierung

3.7 Einstellregeln für Regelkreise

PID-Regler (vergleiche Abschnitt 2.12)

P Grundregelung

I Statische Genauigkeit (langsam)

D Geschwindigkeit (I-Kompensation)

Zwei bewährte Methoden:
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3.7.1 Nach Ziegler und Nichols (Stabilitätsrand)

P-Regler aufdrehen, bis der Regelkreis stationär schwingt:

→ KRkrit

Periodendauer der Schwingung messen:

→ Tkrit

Regler Reglerverstärkung KR Nachstellzeit TN Vorhaltzeit TV

P 0.5KRkrit - -

PI 0.45KRkrit 0.85Tkrit -

PID 0.6KRkrit 0.5Tkrit 0.12Tkrit

Tabelle 3.1: Reglerverstärkung, Nachstellzeit und Vorhaltzeit in Abhängigkeit von den
Parametern des Schwingversuchs

3.7.2 Nach Chien, Hrones und Reswick (Sprungantwort)

KS

h (t)S

tTu
Tg

Abbildung 3.17: Sprungantwort einer Regelstrecke

• Wendetangente → Verzugszeit Tu, Ausgleichszeit Tg

• Anwendbar, wenn Tg/Tu > 3

Definition einer Hilfsgröße:
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KH = Tg
KSTu

Regler Optimiert für Überschwingen KR TN TV

P Störung 0% 0.3KH - -

20% 0.7KH - -

Führung 0% 0.3KH - -

20% 0.7KH - -

PI Störung 0% 0.6KH 4.0Tu -

20% 0.7KH 2.3Tu -

Führung 0% 0.35KH 1.2Tg -

20% 0.6KH 1.0Tg -

PID Störung 0% 0.95KH 2.4Tu 0.42Tu

20% 1.2KH 2.0Tu 0.42Tu

Führung 0% 0.6KH 1.0Tg 0.5Tu

20% 0.95KH 1.35Tg 0.47Tu

Tabelle 3.2: Reglerverstärkung, Nachstellzeit und Vorhaltzeit in Abhängigkeit von statio-
närer Verstärkung, Verzugszeit und Ausgleichszeit
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3.8 Störgrößenaufschaltung

G’St

w xe
GR GS

Gz

GSt

y

-

z

Abbildung 3.18: Störgrößenaufschaltung

Prinzip: Kompensation der Störgröße z, wenn sie messbar ist. Die Störgröße soll also
möglichst keinen Einfluss auf die Ausgangsgröße x haben:
Übertragungsfunktion von z nach x:

Gxz = Gz +GStGS

1 +GRGS

!= 0

Zähler von Gxz muss verschwinden:

Gz +GStGS = 0

Bedingung für Störgrößenaufschaltungsübertragungsfunktion:

GSt = −Gz

GS

Problem: GSt ist nicht immer exakt realisierbar
⇒ Wenigstens stationäre Störunterdrückung (s = 0)
Alternative: Signal vor dem Regler aufschalten:
Neue Übertragungsfunktion von z nach x:

Gxz = Gz +G′StGRGS

1 +GRGS

!= 0
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Zähler gleich null:

Gz +G′StGRGS = 0

Aufschaltungsbedingung:

G′St = − Gz

GRGS

Vorteil: keine Stellenergie notwendig
Nachteil: Signal muss durch Regler

3.9 Vorsteuerung

w x
GV GS

y

z

Abbildung 3.19: Reine Steuerung

Forderung:

x = w

Ideal:

GV = 1
GS

z. B.:

GS = 2
3s+ 1 ⇒ GV = 3s+ 1

2
Probleme:

1. GS ist nicht genau bekannt.

2. GS ist nicht exakt invertierbar (Totzeit, reiner Integrator, . . . ).

3. Störungen werden nicht erkannt.

Stationäre Vorsteuerung GVst erfüllt die Forderung x = w wenigstens nach dem Ein-
schwingvorgang (t→∞ ⇒ s = 0):
Beispiel oben:

GVst = lim
s→0

3s+ 1
2 = 3 · 0 + 1

2 = 0.5
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3.9.1 Kombination mit Regelung

w x

GV

GR GS

y
V

y
R

z

ye

Abbildung 3.20: Kombination von Steuerung mit Regelung

Vorgehensweise:

1. Vorsteuerung GV auf möglichst gute Inversion auslegen

2. Regler GR auslegen (muss nur noch Unzulänglichkeiten der Steuerung kompensie-
ren)

3.10 Digitale (zeitdiskrete) Regelung

A

-

Prozessrechner

Strecke

D

D

A

T TT

w(t)

e(kT)

e(t)

e(t) y(kT)

y(t) x(t)

y(t)

Digitaler
Regler

Abbildung 3.21: Digitale Regelung (T: Abtastzeit)
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e(t)

t

e(kT)

e

T

(a) Abgetasteter Eingangsgrößenverlauf

y(t)

t

y(kT)

y

T

(b) Ausgangsgröße wird gehalten.

Abbildung 3.22: Abtastung bei digitaler Regelung

3.10.1 z-Transformation

Gegeben ist die Übertragungsfunktion im s-Bereich:

G (s) = V (s)
U (s)

Gesucht ist die Übertragungsfunktion im z-Bereich:

G (z) = v (kT )
u (kT )

und daraus abgeleitet, die Differenzengleichung:

vk+1 = f (vk, vk−1, . . . , uk+1, uk, uk−1, . . . )

3.10.2 Näherungen

Rechteckregel:

s ≈ z − 1
T · z

Tustinformel:

s ≈ 2
T
· z − 1
z + 1

3.10.3 Beispiel: Digitaler Tiefpass

Übertragungsfunktion im s-Bereich:

G (s) = 2
5s+ 1

Abtastzeit:
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T = 0.1

Verwendung der Tustinformel:

s ≈ 20 · z − 1
z + 1

Übertragungsfunktion im z-Bereich:

G (z) = 2
5 · 20 · z−1

z+1 + 1 = 2 (z + 1)
100 (z − 1) + z + 1 = 2z + 2

101z − 99

Quotient aus Ausgangs- und Eingangsgröße:

G (z) = vk
uk

= 2z + 2
101z − 99

Über Kreuz multiplizieren:

vk (101z − 99) = uk (2z + 2)

„Multiplikation mit z bedeutet Verschieben in positive Zeitrichtung“:

vk · z =̂ vk+1

Differenzengleichung:

101vk+1 − 99vk = 2uk+1 + 2uk
Nach „neuer Ausgangsgröße“ auflösen:

vk+1 = 99vk + 2uk+1 + 2uk
101

T

T

2
1

2

99

u
k+1

u
k+1

u
k

v
k+1

v
k+1

v
k

101

Abbildung 3.23: Diskrete Realisierung eines digitalen Tiefpasses
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Teil II

Flugregelung
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Kapitel 4

Einführung

4.1 Bezeichnungen der Luftfahrt

• Alle Bezeichnungen nach [1] - [2] (Erweiterungen: VA, ΩK)

• Alle Koordinatensysteme sind rechtshändig („Rechte Hand-Regel“).

• Zusammenfassung und individueller Test unter [3]

• Viele Abbildungen sind (mit freundlicher Genehmigung des Autors) [4] nachemp-
funden.

4.1.1 Bewegungsgrößen

z, Z, w

y, Y, v

x, X, u

L, p

M, q

N, r

Abbildung 4.1: Bewegungsgrößen

Positionsvektor (Richtung, Strecke):
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s =

xy
z

 nach vorne
nach rechts
nach unten

Kraftvektor:

R =

XY
Z


Momentenvektor:

Q =

LM
N


Geschwindigkeitsvektor:

V =

uv
w


Drehgeschwindigkeitsvektor:

Ω =

pq
r

 rollen
nicken
gieren

Lagewinkelvektor (Eulerwinkelvektor):

Φ =

ΦΘ
Ψ



4.1.2 Indizes

A Aerodynamisch

K Bahn

W Wind

F Schub

f Flugzeugfestes (körperfestes) Koordinatensystem

a Flugwindfestes (aerodynamisches) Koordinatensystem

k (Flug)bahnfestes Koordinatensystem

g Erd(lot)festes (geodätisches) Koordinatensystem
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Beispiele

Resultierende aerodynamische Kraft im aerodynamischen Koordinatensystem: RA
a

Resultierendes aerodynamisches Moment im bahnfesten Koordinatensystem: QA
k

Schubkraft im flugzeugfesten Koordinatensystem: F F
f

Schubmoment: QF

Gewichtskraft im geodätischen Koordinatensystem: Gg

Gravitationsvektor (Erdbeschleunigung) im flugzeugfesten Koordinatensystem: gf

4.1.3 Geschwindigkeiten

VW

VA VK

Abbildung 4.2: Fluggeschwindigkeit, Bahngeschwindigkeit und Windgeschwindigkeit

Bahngeschwindigkeit VK Relativgeschwindigkeit des Flugzeugs gegenüber der Erde

Fluggeschwindigkeit VA Relativgeschwindigkeit des Flugzeugs gegenüber der Luft

Windgeschwindigkeit VW Relativgeschwindigkeit der Luft gegenüber der Erde

Zusammenhang zwischen Flug-, Bahn- und Windgeschwindigkeitsvektor:

VK = VA + VW
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Äquivalenter Zusammenhang für Drehgeschwindigkeitsvektoren:

ΩK = ΩA +ΩW

4.1.4 Stellgrößen

xf

zf

-h
qK

dh

Abbildung 4.3: Ein positiver Steuerknüppelausschlag (Ziehen) führt zu einem negativen
Höhenruderausschlag und dadurch zu einem positiven Nickmoment.

yf

zf

-x

dx

pK

dx

Abbildung 4.4: Ein positiver Steuerknüppelausschlag (nach rechts) führt zu einem ne-
gativen Querruderausschlag (rechtes Ruder nach oben) und dadurch zu einem positiven
Rollmoment.
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xf

-dz

-zrK

yf

Abbildung 4.5: Ein negativer Pedalwinkel (rechtes Pedal getreten) führt zu einem negati-
ven Seitenruderausschlag und dadurch zu einem positiven Giermoment.

4.2 Koordinatentransformation

Der allgemeine dreidimensionale Vektor:

V =

uv
w


lässt sich in jedem Koordinatensystem beschreiben.
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xa

y
a

z
a

1V

(a) Vektor V , dargestellt
im a-Koordinatensystem

xb

yb

zb1V

(b) Gleicher Vek-
tor V , dargestellt
im b-Koordinaten-
system

Abbildung 4.6: Koordinatentransformation

Vektor V , ausgedrückt im a-Koordinatensystem:

Va =

uv
w


a

=

uava
wa

 =

1
0
0


Das b-Koordinatensystem entsteht durch eine 90°-Drehung des a-Koordinatensystems um
die ya-Achse. Der Vektor V wird dabei nicht gedreht.
Gleicher Vektor V , ausgedrückt im b-Koordinatensystem:

Vb =

uv
w


b

=

ubvb
wb

 =

0
0
1


Der Vektor hat (ausgedrückt im neuen Koordinatensystem) jetzt andere Koordinaten; es
handelt sich aber immer noch um den selben Vektor.
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4.2.1 Koordinatensysteme

γ
W

γ
a

γ

θ

φ

χ
W

χ
a

χ

−β
K

−β

β
W

−β

α
K α α

−α
W

µ
K

µ
a

−µ
W

ψ

g

Wind Bahn Flugwind Experim.

Erde

Flugzeugf

x :
y : x , y

w W

w g g

V x :
y : x , y

k K

k g g

V x :
z : x , z

a A

a f f

V y ye f=
z = ze a

Mwg Mkg Mag

Mfk Mfa Mfe

Mfg Mka Mea

w k a e

VK

VW

VA

Abbildung 4.7: Koordinatensysteme (Achsenkreuze) und Transformationsmatrizen der
Luftfahrt (nach [1])

• Das geodätische (erdfeste, erdlotfeste, earth-fixed) Koordinatensystem (Index: g) ist
durch seine in Richtung der Schwerkraft zeigende zg-Achse definiert. Die xg-Achse
liegt dann senkrecht dazu in der Erdhorizontalebene und wird häufig in Nordrichtung
angenommen. Die yg-Achse bildet (wie bei allen beschriebenen Koordinatensyste-
men) mit den anderen beiden Achsen ein rechtshändiges Koordinatensystem und
liegt daher auch in der Erdhorizontalebene.

• Das flugzeugfeste (körperfeste, body-fixed) Koordinatensystem (Index: f oder kein
Index) beschreibt die Lage des Flugzeugs im Raum. Die xf -Achse zeigt dabei nach
vorne (üblicherweise in der Symmetrieebene vom Schwerpunkt zur Nase des Flug-
zeugs), die yf -Achse weist nach rechts (Steuerbord) und die zf -Achse entsprechend
nach unten.

• Das aerodynamische (flugwindfeste, aerodynamic) Koordinatensystem (Index: a) ist
durch seine xa-Achse definiert, die in die Richtung des Fluggeschwindigkeitsvektors
(Anströmvektor, Flugwind) VA zeigt. Da das Koordinatensystem durch die Fest-
legung einer Achse noch nicht eindeutig definiert ist (es könnte ja noch um seine
xa-Achse rotieren) wird die za-Achse in der Fluzeugsymmetrieebene (xf -zf -Ebene)
festgelegt. Dadurch liegt dann auch die yf -Achse in der xa-ya-Ebene (vergleiche
Abbildung 4.10).

• Das bahnfeste (flight-path) Koordinatensystem ist analog zum aerodynamischen Ko-
ordinatensystem definiert: Die xk-Achse zeigt in die Richtung des Bahngeschwindig-
keitsvektors VK . Als zusätzliche Festlegung wird die yk-Achse üblicherweise in die
Erdhorizontalebene (xg-yg-Ebene) gelegt (vergleiche Abbildung 4.9)
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4.2.2 Drehung vom erdfesten ins flugzeugfeste Koordinatensys-
tem

xg

x , yg g

x , zf g

y , zf f

k2

k1

k3

xf

yg

yf

zg

zf

Φ

Φ

Θ

Θ

Ψ
Ψ

Abbildung 4.8: Eulerwinkel-Drehung vom erdfesten ins flugzeugfeste Koordinatensystem
[5] (nach [1])

• Der Gierwinkel (Steuerkurs, Azimut, heading, azimuth angle) Ψ dreht in der xg-yg-
Ebene um die zg-Achse. Dabei wird die xg-Achse in die Knotenachse k1 und die
yg-Achse in die Knotenachse k2 überführt. Hauptwertebereich: −π < Ψ ≤ π

• Der Nickwinkel (Längsneigung, pitch angle, inclination angle) Θ dreht in der xf -zg-
Ebene um die k2-Achse. Dabei wird die k1-Achse in die xf -Achse und die zg-Achse
in die Knotenachse k3 überführt. Hauptwertebereich: −π

2 ≤ Θ ≤ π
2

• Der Rollwinkel (Querneigung, Hängewinkel, bank angle) Φ dreht in der yf -zf -Ebene
um die xf -Achse. Dabei wird die k2-Achse in die yf -Achse und die k3-Achse in die
zf -Achse überführt. Hauptwertebereich: −π < Φ ≤ π
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4.2.3 Drehung vom erdfesten ins bahnfeste Koordinatensystem

xg

x , yg g

x , zk k

yk

kk

zk

xk

yg

zg

γ

γ

χ χ

Abbildung 4.9: Drehung vom erdfesten ins bahnfeste Koordinatensystem [5]

• Der Bahnazimut (flight-path azimuth angle) χ dreht in der xg-yg-Ebene um die
zg-Achse. Dabei wird die xg-Achse in die Knotenachse kk und die yg-Achse in die
yk-Achse überführt. Hauptwertebereich: −π < χ ≤ π

• Der Bahnwinkel (Bahnneigungswinkel, Steigwinkel, angle of climb, flight-path incli-
nation angle) γ dreht in der xk-zk-Ebene um die yk-Achse. Dabei wird die kk-Achse
in die xk-Achse und die zg-Achse in die zk-Achse überführt. Hauptwertebereich:
−π

2 ≤ γ ≤ π
2

• Eine Drehung um die xk-Achse (wie bei den Eulerwinkeln mit Φ) findet nicht statt,
da die yk-Achse per definitionem in der Erdhorizontalebene (xg-yg-Ebene) liegt.
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4.2.4 Drehung vom aerodynamischen ins flugzeugfeste Koordi-
natensystem

xa

xf

xe

x , ya a

zf

yf

ya

β

β

za

α

α

Abbildung 4.10: Drehung vom aerodynamischen ins flugzeugfeste Koordinatensystem [5]

• Der Schiebewinkel (sideslip angle) β dreht in der xa-ya-Ebene um die za-Achse.
Durch die Drehung in mathematisch negativer Richtung, also um „Minus Beta“
wird die xa-Achse in die Zwischenachse xe (experimentelles Koordinatensystem)
und die ya-Achse in die yf -Achse überführt. Hauptwertebereich: −π

2 ≤ β ≤ π
2

• Der Anstellwinkel (angle of attack) α dreht in der xf -zf -Ebene um die yf -Achse.
Dabei wird die xe-Achse in die xf -Achse und die za-Achse in die zf -Achse überführt.
Hauptwertebereich: −π < α ≤ π

• Eine Drehung um die xf -Achse (wie bei den Eulerwinkeln mit Φ) findet nicht statt,
da die za-Achse per definitionem in der Flugzeugsymmetrieebene (xf -zf -Ebene)
liegt.

4.2.5 Transformationsmatrizen

Drehung mit dem Winkel wz um eine z-Achse:

Mz =

 coswz sinwz 0
− sinwz coswz 0

0 0 1


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Drehung mit dem Winkel wy um eine y-Achse:

My =

coswy 0 − sinwy
0 1 0

sinwy 0 coswy


Drehung mit dem Winkel wx um eine x-Achse:

Mx =

1 0 0
0 coswx sinwx
0 − sinwx coswx


Gesamttransformationsmatrix bei einer Drehreihenfolge wz → wy → wx („von rechts
lesen“):

Mges = Mx ·My ·Mz

=

1 0 0
0 coswx sinwx
0 − sinwx coswx


coswy 0 − sinwy

0 1 0
sinwy 0 coswy


 coswz sinwz 0
− sinwz coswz 0

0 0 1


Transformation vom geodätischen ins flugzeugfeste Koordinatensystem:

Mfg =

1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ


cosΘ 0 − sinΘ

0 1 0
sinΘ 0 cosΘ


 cosΨ sinΨ 0
− sinΨ cosΨ 0

0 0 1

 (4.1)

=

 cosΘ cosΨ cosΘ sinΨ − sinΘ
sinΦ sinΘ cosΨ − cosΦ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ sinΦ cosΘ
cosΦ sinΘ cosΨ + sinΦ sinΨ cosΦ sinΘ sinΨ − sinΦ cosΨ cosΦ cosΘ


Transformation vom aerodynamischen ins flugzeugfeste Koordinatensystem:

Mfa =

cosα 0 − sinα
0 1 0

sinα 0 cosα


 cos(−β) sin(−β) 0
− sin(−β) cos(−β) 0

0 0 1



=

cosα 0 − sinα
0 1 0

sinα 0 cosα


cos β − sin β 0

sin β cos β 0
0 0 1



=

cosα cos β − cosα sin β − sinα
sin β cos β 0

sinα cos β − sinα sin β cosα


Transformation vom geodätischen ins bahnfeste Koordinatensystem:
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Mkg =

cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ


 cosχ sinχ 0
− sinχ cosχ 0

0 0 1



=

cos γ cosχ cos γ sinχ − sin γ
− sinχ cosχ 0

sin γ cosχ sin γ sinχ cos γ



Transformationsrichtungsumkehr

Zwei Möglichkeiten zur Erzeugung der Umkehrtransformation (Rücktransformation):

1. Durch Umkehren der Reihenfolge der Einzeltransformationen und negative Winkel:

Mgk =

 cos(−χ) sin(−χ) 0
− sin(−χ) cos(−χ) 0

0 0 1


cos(−γ) 0 − sin(−γ)

0 1 0
sin(−γ) 0 cos(−γ)



=

cosχ − sinχ 0
sinχ cosχ 0

0 0 1


 cos γ 0 sin γ

0 1 0
− sin γ 0 cos γ



=

cosχ cos γ − sinχ cosχ sin γ
sinχ cos γ cosχ sinχ sin γ
− sin γ 0 cos γ


2. Durch Invertieren der Transformationsmatrix. Bei den verwendeten Drehtransfor-

mationsmatrizen vereinfacht sich das Invertieren auf das Transponieren:

Mgk = M−1
kg = MT

kg

=

cos γ cosχ cos γ sinχ − sin γ
− sinχ cosχ 0

sin γ cosχ sin γ sinχ cos γ


T

=

cos γ cosχ − sinχ sin γ cosχ
cos γ sinχ cosχ sin γ sinχ
− sin γ 0 cos γ



Beispiel

Der Gewichtsvektor hat im geodätischen Koordinatensystem nur eine z-Komponente,
nämlich seinen Betrag:

Gg =

 0
0
mg


Nach der Transformation ins flugzeugfeste Koordinatensystem ist der Gewichtsvektor
„vollbesetzt“:
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Gf = MfgGg =

· · · · · · − sinΘ
· · · · · · sinΦ cosΘ
· · · · · · cosΦ cosΘ


 0

0
mg



=

 − sinΘ ·mg
sinΦ cosΘ ·mg
cosΦ cosΘ ·mg

 =

 − sinΘ
sinΦ cosΘ
cosΦ cosΘ

 ·mg

4.2.6 Umrechnung zwischen kartesischen und sphärischen Ko-
ordinaten

Umrechnung der Fluggeschwindigkeit

Der Fluggeschwindigkeitsvektor VA lässt sich, bedingt durch die Definition des aerody-
namischen Koordinatensystems, in diesem besonders einfach ausdrücken. Er hat dort nur
eine uA-Komponente:

VAa =

uAvA
wA


a

=

VA0
0


Nach der Transformation ins flugzeugfeste Koordinatensystem ergeben sich die Beziehun-
gen zwischen den kartesischen und den sphärischen Koordinaten (Kugelkoordinaten) des
Fluggeschwindigkeitsvektors:

VAf =

uAvA
wA


f︸ ︷︷ ︸

kartesisch

= MfaVAa =

cosα cos β · · · · · ·
sin β · · · · · ·

sinα cos β · · · · · ·


VA0

0

 =

VA cosα cos β
VA sin β

VA sinα cos β


︸ ︷︷ ︸

sphärisch

Überprüfen der Identität der Beträge beider Darstellungen:

|VA| =
√
u2
Af + v2

Af + w2
Af

=
√
V 2
A cos2 α cos2 β + V 2

A sin2 β + V 2
A sin2 α cos2 β

=
√√√√V 2

A

(
cos2 α + sin2 α

)
︸ ︷︷ ︸

1

cos2 β + V 2
A sin2 β

=
√√√√V 2

A

(
cos2 β + sin2 β

)
︸ ︷︷ ︸

1

= VA q. e. d

Quotient zweier kartesischer Koordinaten:

wAf
uAf

= VA sinα cos β
VA cosα cos β = tanα
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Auflösung nach dem Anstellwinkel:

α = arctan
(
wAf
uAf

)
Zweite kartesische Koordinate:

vAf = VA · sin β

Auflösung nach dem Schiebewinkel:

β = arcsin
(
vAf
VA

)

Umrechnung der Bahngeschwindigkeit

Der Bahngeschwindigkeitsvektor VK lässt sich, bedingt durch die Definition des bahnfes-
ten Koordinatensystems, in diesem besonders einfach ausdrücken. Er hat dort nur eine
uK-Komponente:

VKk =

uKvK
wK


k

=

VK0
0


Nach der Transformation ins erdfeste Koordinatensystem ergeben sich die Beziehun-
gen zwischen den kartesischen und den sphärischen Koordinaten (Kugelkoordinaten) des
Bahngeschwindigkeitsvektors:

VKg =

uKvK
wK


g︸ ︷︷ ︸

kartesisch

= MgkVKk =

cos γ cosχ · · · · · ·
cos γ sinχ · · · · · ·
− sin γ · · · · · ·


VK0

0

 =

VK cos γ cosχ
VK cos γ sinχ
−VK sin γ


︸ ︷︷ ︸

sphärisch

Quotient zweier kartesischer Koordinaten:

vKg
uKg

= VK cos γ sinχ
VK cos γ cosχ = tanχ

Auflösung nach dem Bahnazimut:

χ = arctan
(
vKg
uKg

)
Dritte kartesische Koordinate:

wKg = −VK sin γ

Auflösung nach dem Bahnwinkel:

γ = − arcsin
(
wKg
VK

)
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Zusammenfassung der Umrechnungen

Sphärisch → Kartesisch:

uAf = VA cosα cos β
vAf = VA sin β
wAf = VA sinα cos β
uKg = VK cos γ cosχ
vKg = VK cos γ sinχ
wKg = −VK sin γ

Kartesisch → Sphärisch:

VA =
√
u2
Af + v2

Af + w2
Af

α = arctan
(
wAf
uAf

)

β = arcsin
(
vAf
VA

)
VK =

√
u2
Kg + v2

Kg + w2
Kg

γ = − arcsin
(
wKg
VK

)
χ = arctan

(
vKg
uKg

)
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4.2.7 Darstellung der Winkel und Vektoren

xa

za

xf

zf

xk

xg

zg

q, M

G

wWg

wKg VK

VW

VA
uWg

uAf

uKg

wAf

a

a

aW

g
Q

Q

iF
F

AA = -Za

F = Y = c = b = 0

aK

gA AW = -Xa

Abbildung 4.11: Winkel und Vektoren in der x-z-Ebene

87



xa

ya

xkxg xf

yg

yf

vWg

vAfuAf

vKg

VK
VW

VA

uWg

uKg

b

b

b
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c

c

AQ = Ya

F
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Abbildung 4.12: Winkel und Vektoren in der x-y-Ebene
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Abbildung 4.13: Winkel und Vektoren in der y-z-Ebene
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Kapitel 5

Subsysteme

5.1 Aerodynamik

Die Relativgeschwindigkeit VA zwischen dem Flugzeug und der Luft mit der Dichte ρ
erzeugt einen Staudruck:

q̄ = ρ

2V
2
A

Das Produkt aus Staudruck q̄ und Bezugsflügelfläche S wird aerodynamische Krafteinheit
E genannt:

E = q̄ · S

Die aerodynamischen Kräfte ergeben sich als Produkt der aerodynamischen Krafteinheit
mit den dimensionslosen Beiwerten:
Auftrieb:

A = E · CA

Widerstand:

W = E · CW

Querkraft:

Q = E · CQ

Für die Momente wird dimensionsbedingt zusätzlich noch eine Bezugslänge benötigt. Üb-
licherweise wird dazu heute bei allen Momenten die Bezugsflügeltiefe lµ verwendet:
Rollmoment:

L = E · lµ · Cl
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Nickmoment:

M = E · lµ · Cm

Giermoment:

N = E · lµ · Cn

5.1.1 Beiwerte

Die Beiwerte sind im allgemeinen nichtlineare Funktionen der jeweiligen aerodynamischen
Einflussgrößen:

Beiwerte der Längsbewegung

Auftriebsbeiwert:

CA = CA (α, η, Ma, q, α̇, . . .)

Widerstandsbeiwert:

CW = CW (α, η, Ma, . . .)

Nickmomentenbeiwert:

Cm = Cm (α, η, Ma, q, α̇, . . .)

Alternative Modellierung des Widerstandsbeiwertes über die Widerstandspolare:

C
A

C
W

C
W0

Abbildung 5.1: Widerstandspolare

Widerstandsbeiwert:

CW = CW0 + k · C2
A

Dabei ist CW0 der Nullwiderstand (bei Auftrieb gleich null) und k · C2
A ist der durch den

Auftrieb induzierte Widerstand.
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Beiwerte der Seitenbewegung

Querkraftbeiwert:

CQ = CQ (β, p, r, ξ, ζ, . . .)

Rollmomentenbeiwert:

Cl = Cl (β, p, r, ξ, ζ, . . .)

Giermomentenbeiwert:

Cn = Cn (β, p, r, ξ, ζ, . . .)

5.1.2 Lineare Derivativ-Aerodynamik

Ein Derivativ ist die partielle Ableitung eines Beiwertes nach einer Einflussgröße.

Beispiel: Auftriebskennlinie

α

C
A

α(C )
A

= 0

C = C
A0 A

α( )= 0

C
Amax

∂C
A

∂α
C

Aα =

Abbildung 5.2: Auftriebskennlinie (Auftriebsbeiwert über Anstellwinkel)

Innerhalb eines Arbeitsbereiches (in der Umgebung eines Arbeitspunktes) wird eine li-
neare Abhängigkeit des Auftriebsbeiwertes vom Anstellwinkel angenommen. Dort ist die
Steigung der Kennlinie konstant und entspricht dem Derivativ CAα:
Auftrieb aufgrund des Anstellwinkels:

CAα = ∂CA
∂α

Analog werden weitere Auftriebsderivative definiert:
Auftrieb aufgrund des Höhenruderausschlags:

CAη = ∂CA
∂η
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Auftrieb aufgrund der Machzahl:

CAMa = ∂CA
∂Ma

Da die Derivative (genau wie die Beiwerte) dimensionslos sind, muss eine Drehgeschwin-
digkeit (Einheit: s−1) erst mit einer Bezugszeitkonstante dimensionslos gemacht (nor-
miert) werden, bevor nach ihr partiell abgeleitet werden kann. Üblicherweise wird zur
Normierung die Zeit

TN = lµ
VA

verwendet:
Normierte aerodynamische Nickgeschwindigkeit:

q∗A = TN · qA = lµ
VA
· qA

Das entsprechende Derivativ ergibt sich, indem nach der normierten Drehgeschwindigkeit
partiell abgeleitet wird:
Auftrieb aufgrund der Nickgeschwindigkeit:

CAq = ∂CA
∂ (q∗A)

Der Gesamtauftriebsbeiwert setzt sich, im Rahmen der beschriebenen linearen Derivativ-
Aerodynamik, aus der Linearkombination der Einzeleinflüsse zusammen:
Gesamtauftriebsbeiwert:

CA = CA0 + CAα · α + CAη · η + CAMa ·Ma+ CAq · q∗A + . . .

Entsprechendes gilt für die übrigen Kraft- und Momentenbeiwerte:
Gesamtnickmomentenbeiwert:

Cm = Cm0 + Cmα · α + Cmη · η + CmMa ·Ma+ Cmq · q∗A + . . .

Gesamtquerkraftbeiwert:

CQ = CQβ · β + CQp · p∗A + CQr · r∗A + CQξ · ξ + CQζ · ζ + . . .

Gesamtrollmomentenbeiwert:

Cl = Clβ · β + Clp · p∗A + Clr · r∗A + Clξ · ξ + Clζ · ζ + . . .

Gesamtgiermomentenbeiwert:
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Cn = Cnβ · β + Cnp · p∗A + Cnr · r∗A + Cnξ · ξ + Cnζ · ζ + . . .

Die einzelnen Derivative werden üblicherweise nach Ihrem Ursache-Wirkungs-Zusammen-
hang bezeichnet:
Nickdämpfung (Dämpfung der Nickbewegung):

Cmq

Gierdämpfung (Dämpfung der Gierbewegung):

Cnr

Windfahnenstabilität (Ausrichtung „in den Wind“):

Cnβ

Schieberollmoment(enderivativ) („Rollen aufgrund Schieben“):

Clβ

Gierseitenkraft(derivativ) („Querkraft aufgrund Gieren“):

CQr

usw.

5.2 Triebwerk

Schubvektor (Maximalschub) abhängig von

• Luftein- und -austrittsgeschwindigkeitsvektor (Schubeinstellwinkel, Anstellwinkel,
Schiebewinkel)

• Luftdichte (Höhe)

• Machzahl . . .

Tiefpassverhalten:

TF · Ḟ + F = Fc

mit

TF Triebwerkszeitkonstante
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F Schub

Fc Sollschub

Schubmoment:

QF = rF × FF =

rxry
rz

×
FxFy
Fz


mit

FF Schubvektor

rF Schubvektorangriffspunkt (Abstand des Triebwerks vom Referenzpunkt)

QF Schubmomentenvektor

5.3 Stellerdynamik

5.3.1 Tierversuch

Nehmen Sie an, in Ihrer Badewanne wäre auf halber Höhe ein Brett angebracht, unter
dem eine Kunststoffente auf dem Wasser schwimmt.

(a) Ablauf geschlossen, Zulauf ge-
öffnet, Wasserpegel steigt, Ente
steigt.

(b) Ablauf geöffnet, Zulauf ge-
schlossen, Wasserpegel sinkt, Ente
sinkt nicht.

Abbildung 5.3: Tierversuch

• Solange der Zulauf geöffnet ist, der Ablauf geschlossen und die Ente das Brett noch
nicht berührt, steigt die Ente zusammen mit dem steigenden Wasserpegel.

• Sobald die Ente gegen das Brett stößt, bleibt sie in konstanter Höhe stehen. Der
Wasserpegel steigt dessen ungeachtet weiter.

• Wenn nun der Zulauf geschlossen und der Ablauf geöffnet wird, beginnt der Was-
serpegel zu sinken. Die Ente allerdings sinkt noch nicht.

• Erst, wenn der sinkende Wasserpegel die Ente unter dem Brett erreicht, kann diese
zusammen mit dem Wasser sinken.
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5.3.2 Verallgemeinerung

Badewanne Energiespeicher, Integrator, dynamisches System

Zu- bzw. Ablauf Eingangsgröße u des Integrators

Wasserpegel Energieinhalt, Zustand, Ausgangsgröße v des Integrators

Brett Begrenzung vb der Ausgangsgröße

vu vT
I

v
b

(a) Blockschaltbild

tT
T

u

v

v
b

(b) Zeitverläufe

Abbildung 5.4: Nachträglich begrenzter Integrator

Problem: Wenn die Ausgangsgröße eines dynamischen Systems begrenzt wird, kann es
passieren, dass die internen Zustandsgrößen „voll laufen“ und die Reaktion des Sys-
tems erst nach einer unerwünschten Totzeit TT sichtbar wird, obwohl das begrenzte
Ausgangssignal eigentlich sofort reagieren sollte.

Lösung: Zusätzliches Stoppen der entsprechenden Zustandsgrößen, wenn die Ausgangs-
größe in ihre Begrenzung läuft. Im Beispiel: Stoppen des Integrators durch explizites
Nullsetzen seiner Eingangsgröße: Schließen des Zulaufs.

Merke:�
�

�
�Niemals gedankenlos die Ausgangsgröße eines dynamischen Systems begrenzen.
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5.4 Wind
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Abbildung 5.5: Verlust eines Passagierflugzeugs am Flughafen J. F. Kennedy am
24. 6. 1975

Der Gesamtwind lässt sich vereinfacht aus drei Anteilen (stationärer Wind, Turbulenzen
(Böen) und Scherwind) zusammensetzen:

VW = VW Stat + VW Turb + VW Scher

5.4.1 Turbulenzen

Rausch-
generator

Tief-
pass

weißes
Rauschen

rosa
Rauschen

Abbildung 5.6: Weißes Rauschen: gleiche Leistungsdichte für alle Frequenzen. Rosa Rau-
schen: hohe Frequenzen haben geringere Leistungsdichte.

5.4.2 Windgradienten, Scherwind

Der Nabla-Operator

Nabla-Operator (Partieller Ableitungsoperator):
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∇ =


∂
∂x
∂
∂y
∂
∂z

 =
[
∂
∂x

∂
∂y

∂
∂z

]T

Die Anwendung des Nabla-Operators auf ein Skalarfeld p liefert einen Vektor (den Gra-
dienten):
Gradient:

∇p =


∂
∂x
∂
∂y
∂
∂z

 p =


∂p
∂x
∂p
∂y
∂p
∂z

 =

pxpy
pz

 = grad (p)

Die Anwendung des Nabla-Operators auf ein Vektorfeld V liefert, je nach Art des Produk-
tes, einen Skalar (Divergenz), einen Vektor (Rotation) oder eine Matrix (Jakobi-Matrix):
Divergenz (Skalarprodukt, inneres Produkt):

∇ · V =


∂
∂x
∂
∂y
∂
∂z

V =


∂
∂x
∂
∂y
∂
∂z


uv
w

 = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ux + vy + wz = div (V )

Rotation (Kreuzprodukt):

∇× V =


∂
∂x
∂
∂y
∂
∂z

× V =


∂
∂x
∂
∂y
∂
∂z

×
uv
w

 =


∂w
∂y
− ∂v

∂z
∂u
∂z
− ∂w

∂x
∂v
∂x
− ∂u

∂y

 =

wy − vzuz − wx
vx − uy

 = rot (V )

Jakobi-Matrix (Dyadisches Produkt, äußeres Produkt):

∇ · V T =


∂
∂x
∂
∂y
∂
∂z

V T =


∂
∂x
∂
∂y
∂
∂z


uv
w


T

=


∂
∂x
∂
∂y
∂
∂z

 [u v w
]

=


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =

ux vx wx
uy vy wy
uz vz wz


Quellenfreiheit:

div (V ) = ux + vy + wz = 0

Drehfreiheit:

rot (V ) =

wy − vzuz − wx
vx − uy

 =

0
0
0


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Windgradienten
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(a) uW x (Wind in x-Rich-
tung, der in x-Richtung zu-
nimmt)
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(b) vW y (Wind in y-Rich-
tung, der in y-Richtung zu-
nimmt)

yg
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(c) wW z (Wind in z-Rich-
tung, der in z-Richtung zu-
nimmt)

Abbildung 5.7: Windgradienten
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Abbildung 5.8: Horizontales, quellenfreies Windfeld (uWx = −vWy)
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Abbildung 5.9: Horizontales, drehungsfreies Windfeld (uWy = vWx)
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Abbildung 5.10: Horizontales, drehendes Windfeld (uWy = −vWx)
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Beschreibung des durch Windscherungen hervorgerufenen Windanteils mittels der Jako-
bi-Matrix (Scherungstensor):

VW Scher =

uWvW
wW


Scher

=
(
∇ · V T

W

)T
· s =

uWx vWx wWx

uWy vWy wWy

uWz vWz wWz


T

s

=

uWx uWy uWz

vWx vWy vWz

wWx wWy wWz


xy
z

 =

 uWx · x+ uWy · y + uWz · z
vWx · x+ vWy · y + vWz · z
wWx · x+ wWy · y + wWz · z



5.4.3 Flug im stationären Windfeld
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Abbildung 5.11: Flug im stationären Windfeld (Trochoide, Zykloide)

In jedem Punkt gilt:

VK = VA + VW (Vektorsumme)

Das Flugzeug fliegt gegenüber der Luft einen schiebewinkelfreien, stationären, horizon-
talen Kurvenflug. Alle aerodynamischen Größen (Anstellwinkel, Auftrieb, . . . ) sind kon-
stant.
Der Bahngeschwindigkeitsvektor ist immer tangential zur Flugbahn ausgerichtet.

Punkt A „Umkehrpunkt“ des „Kreises“ gegenüber der Luft, bei xg = 0. Der Flugge-
schwindigkeitsvektor zeigt genau in xg-Richtung.

100



Punkt B Das Flugzeug fliegt genau in negative yg-Richtung, gegen den Wind. Der Betrag
des Bahngeschwindigkeitsvektors ist minimal.

Punkt C Das Flugzeug fliegt genau in positive yg-Richtung, mit dem Wind. Der Betrag
des Bahngeschwindigkeitsvektors ist maximal.

Punkt D Umkehrpunkt der Trochoide gegenüber der Erde. Der Bahngeschwindigkeits-
vektor zeigt genau in xg-Richtung.

Bahngeschwindigkeit und Energie

Zwischen den Punkten B und C nimmt der Betrag des Bahngeschwindigkeitsvektors zu;
das Flugzeug beschleunigt also bezogen auf die als ruhend angenommene Erde. Zwischen
C und E wird das Flugzeug abgebremst.
Gegenüber der Luft fliegt das Flugzeug einen Kreis. Der Fluggeschwindigkeitsvektor dreht
sich also mit der konstanten Gierwinkelableitung:

VAg =
VA sin

(
Ψ̇ t
)

VA cos
(
Ψ̇ t
)

Der Wind kommt von Westen und hat daher nur eine yg-Komponente:

VWg =
[

0
VW

]

Der Bahngeschwindigkeitsvektor im erdfesten Koordinatensystem ergibt sich dann aus
der Vektorsumme:

VKg = VAg + VWg =
VA sin

(
Ψ̇ t
)

VA cos
(
Ψ̇ t
)+

[
0
VW

]
=
 VA sin

(
Ψ̇ t
)

VA cos
(
Ψ̇ t
)

+ VW


Der Betrag der Bahngeschwindigkeit ist eine periodische Funktion der Zeit:

VKg = |VKg| =
√(

VA sin
(
Ψ̇ t
))2

+
(
VW + VA cos

(
Ψ̇ t
))2

=
√
V 2
A sin2

(
Ψ̇ t
)

+ V 2
W + 2VWVA cos

(
Ψ̇ t
)

+ V 2
A cos2

(
Ψ̇ t
)

=
√
V 2
A + V 2

W + 2VWVA cos
(
Ψ̇ t
)

Wenn sich die Bahngeschwindigkeit des Flugzeugs im Verlaufe der Trochoide ändert, kann
auch die kinetische Energie nicht konstant sein:

Ekin = 1
2mV

2
Kg 6= const.

Da aber die potenzielle Energie der Höhe beim horizontalen Kurvenflug konstant bleibt,
muss die Energie direkt aus dem umgebenden Windfeld entnommen, bzw. an dieses ab-
gegeben werden.
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5.5 Kinetik

Die Flugzeugbewegung besitzt sechs Freiheitsgrade:
Drei translatorische Freiheitsgrade:

• Vorne/hinten

• Rechts/links

• Oben/unten

Drei rotatorische Freiheitsgrade:

• Rollen (um die x-Achse)

• Nicken (um die y-Achse)

• Gieren (um die z-Achse)

Jeder Freiheitsgrad wird durch zwei Zustände (Geschwindigkeit und Position, bzw. Dreh-
geschwindigkeit und Lagewinkel) beschrieben → insgesamt 12 Zustände.
Die 12 Zustände lassen sich zu vier dreidimensionalen Zustandsvektoren zusammenfassen:
Bahndrehgeschwindigkeitsvektor:

ΩK =

pKqK
rK


Lage(drehwinkel)vektor:

Φ =

ΦΘ
Ψ


Bahngeschwindigkeitsvektor:

VK =

uKvK
wK


Positionsvektor:

s =

xy
z


Die gesamte Kinetik wird dann durch ein System von vier gekoppelten, nichtlinearen
Vektordifferenzialgleichungen beschrieben:
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Ω̇K = fΩ (Q, ΩK)
Φ̇ = fΦ (ΩK , Φ)
V̇K = fV (R, VK , ΩK , Φ)
ṡ = fs (VK , Φ)

f  (R,V ,W ,F )V K K

f  (Q, W )W K

f  (V , F)s K

f  (W , F)F K

WKWK

.
Q

R VKVK

.

FF
.

ss
.

Abbildung 5.12: Allgemeine Kinetik der Flugzeugbewegung (6 Freiheitsgrade)

5.5.1 Differenzialgleichung der Position

„Die Geschwindigkeit ist die zeitliche Änderung der Position“:

ds
dt = VK

Ausgedrückt im erdfesten Koordinatensystem:

dsg
dt = VKg

Transformation der Bahngeschwindigkeit:

dsg
dt = MgfVKf

Verwenden des Ableitungspunktes für die direkte Ableitung im geodätischen (inertialen)
Koordinatensystem:

ṡg = MgfVKf
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5.5.2 Differenzialgleichung des Drehwinkels

„Die Drehgeschwindigkeit ist die zeitliche Änderung des Drehwinkels“:

dΦ
dt = ΩK

Ausgedrückt im flugzeugfesten Koordinatensystem:
(
dΦ
dt

)
f

= ΩKf

Wenn jetzt alle Drehwinkel-Komponenten des Lagevektors um die flugzeugfesten Achsen
drehen würden, dann würde

(
dΦ
dt

)
f

die Zeitableitungen der Eulerwinkel

Φ̇Θ̇
Ψ̇


beinhalten und die Drehwinkeldifferenzialgleichung wäre komplett. Leider aber dreht Ψ
nicht um die zf -Achse, sondern um die zg-Achse und Θ dreht nicht um die yf -Achse,
sondern um die k2-Knotenachse. Die entsprechenden beiden Winkelableitungen müssen
also erst einzeln in das flugzeugfeste Koordinatensystem transformiert werden:

(
dΦ
dt

)
f

=

Φ̇0
0



+

1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ


0
Θ̇
0



+

1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ


cosΘ 0 − sinΘ

0 1 0
sinΘ 0 cosΘ


0

0
Ψ̇



=

1 0 − sinΘ
0 cosΦ sinΦ cosΘ
0 − sinΦ cosΦ cosΘ


Φ̇Θ̇
Ψ̇


Die Drehwinkeldifferenzialgleichung lautet dann:

1 0 − sinΘ
0 cosΦ sinΦ cosΘ
0 − sinΦ cosΦ cosΘ


Φ̇Θ̇
Ψ̇

 = ΩKf =

pKfqKf
rKf


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Zur Auflösung nach dem Ableitungsvektor muss die Transformationsmatrix invertiert wer-
den. Leider ist sie nicht orthogonal (weil die Eulerwinkel um Achsen drehen, die aufeinan-
der nicht senkrecht stehen) und kann daher nicht einfach durch Transponieren invertiert
werden:

Φ̇ =

Φ̇Θ̇
Ψ̇

 =

1 sinΦ tanΘ cosΦ tanΘ
0 cosΦ − sinΦ
0 sinΦ/cosΘ cosΦ/cosΘ

ΩKf = MΦf ·ΩKf (5.1)

5.5.3 Differenzialgleichung der Bahngeschwindigkeit

Impulssatz: „Die Kraft R ist die zeitliche Änderung des Impulses P “:

dP
dt = R

Ausgedrückt im flugzeugfesten Koordinatensystem:

(
dP
dt

)
f

= Rf

Problem: Das flugzeugfeste Koordinatensystem, in dem die Impulsänderung

(
dP
dt

)
f

beschrieben wird, ist kein Inertialsystem, sondern dreht mit der Bahndrehgeschwindigkeit
ΩK gegenüber der als ruhend angenommenen Erde. Wie in Abschnitt 5.5.3 gezeigt wird,
muss daher bei der inertialen Ableitung des Impulses die Drehung des flugzeugfesten
Koordinatensystems im so genannten Eulerterm (Kreuzprodukt) berücksichtigt werden:

Ṗf +ΩKf × Pf = Rf

„Impuls ist Masse mal Geschwindigkeit“:

(mVKf )˙+ΩKf × (mVKf ) = Rf

Produktregel der Differenziation:

ṁVKf +mV̇Kf +ΩKf × (mVKf ) = Rf

Vernachlässigung der Massenänderung:

mV̇Kf +ΩKf × (mVKf ) = Rf

Ausklammern der konstanten, skalaren Masse:
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m
(
V̇Kf +ΩKf × VKf

)
= Rf

Gesamtkraft aus Triebwerk, Aerodynamik und Gewicht:

m
(
V̇Kf +ΩKf × VKf

)
= RF

f +RA
f +Gf

Transformation von Gewicht und Luftkraft:

m
(
V̇Kf +ΩKf × VKf

)
= RF

f +MfaR
A
a +MfgGg

Auflösen nach der Ableitung:

V̇Kf = 1
m

(
RF
f +MfaR

A
a +MfgGg

)
−ΩKf × VKf

„Herauskürzen“ der Masse aus dem Gewicht:

V̇Kf = 1
m

(
RF
f +MfaR

A
a

)
+Mfggg −ΩKf × VKf

Ableitung eines Vektors in einem drehenden Koordinatensystem

Im Folgenden wird das geodätische Koordinatensystem als inertiales (ruhendes, raumfes-
tes) Koordinatensystem aufgefasst und das flugzeugfeste Koordinatensystem als Beispiel
für ein nicht inertiales (drehendes) Koordinatensystem verwendet.
Die inertiale Ableitung (hochgestellter Index g) eines Vektors V , ausgedrückt im flug-
zeugfesten Koordinatensystem (tiefgestellter Index f) ergibt sich, indem der Vektor aus
dem flugzeugfesten Koordinatensystem ins geodätische Koordinatensystem transformiert
wird, dort inertial abgeleitet und dann wieder ins flugzeugfeste Koordinatensystem zu-
rücktransformiert wird:

(
dV
dt

)g
f

= Mfg
d(MgfVf )

dt

Produktregel:

(
dV
dt

)g
f

= Mfg

Mgf

(
dV
dt

)f
f

+ d (Mgf )
dt Vf


Ausmultiplizieren:

(
dV
dt

)g
f

= MfgMgf

(
dV
dt

)f
f

+Mfg
d (Mgf )

dt Vf

Matrizen zusammenfassen und Punkte verwenden:
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(
dV
dt

)g
f

= V̇f +MfgṀgfVf

Dabei ist

(
dV
dt

)f
f

= V̇f

die direkt im flugzeugfesten Koordinatensystem komponentenweise durchgeführte Ablei-
tung des Vektors, wiederum ausgedrückt im flugzeugfesten Koordinatensystem. Die Zeita-
bleitung der Transformationsmatrix

d (Mgf )
dt = Ṁgf

wird ebenfalls einzeln für jedes Element der Matrix durchgeführt.
In einer etwas länglicheren Herleitung (Matlab-Datei:
https://m-server.fk5.hs-bremen.de/rtfr/skript/euler_term.mlx)
lässt sich das die Euler-Winkelableitungen beinhaltende Matrizenprodukt

MfgṀgf

zu einem Kreuzprodukt mit dem Vektor der flugzeugfesten Bahndrehgeschwindigkeit zu-
sammenfassen:

(
dV
dt

)g
f

= V̇f +ΩKf × Vf

Das Kreuzprodukt ΩKf × Vf wird manchmal als „Euler-Term“ bezeichnet.

Beispiel: Horizontaler (gefesselter) Kurvenflug (ohne Hängen, ohne Schieben)

xg

yg

xf

yf

xf

yf

VK

VK

xf

yf

VK

Ψ

Abbildung 5.13: Drehung des flugzeugfesten Koordinatensystems und des Bahngeschwin-
digkeitsvektors bei horizontalem Kurvenflug
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Da sich der Bahngeschwindigkeitsvektor VK (tangential zur Flugbahn) beim horizontalen,
hänge- und schiebefreien Kurvenflug zusammen mit dem Flugzeug (und damit auch mit
dem flugzeugfesten Koordinatensystem) dreht, zeigt er immer in xf -Richtung.
Er ist daher, wenn er im flugzeugfesten Koordinatensystem ausgedrückt wird, konstant:

VKf =

uKf0
0


Ergo verschwindet die direkt im flugzeugfesten Koordinatensystem komponentenweise
durchgeführte Ableitung:

(
dVK
dt

)f
f

= V̇Kf =

0
0
0


Da die Flugbahn in der Erdhorizontalebene liegt, kann der Drehgeschwindigkeitsvektor
nur eine z-Komponente besitzen. Diese ist gleich der zeitlichen Änderung des Gierwinkels
in negativer Drehrichtung:

ΩKf =

 0
0
−Ψ̇


Die vollständige inertiale Geschwindigkeitsableitung lautet dann:

(
dV
dt

)g
f

= V̇f +ΩKf × Vf =

0
0
0

+

 0
0
−Ψ̇

×
uKf0

0

 =

 0
−Ψ̇ · uKf

0


Der Term −Ψ̇ · uKf entspricht dabei, physikalisch richtig, genau der Zentripetalbeschleu-
nigung, die in negativer yf -Richtung wirkt und das Flugzeug auf seiner Kreisbahn hält.

5.5.4 Differenzialgleichung der Bahndrehgeschwindigkeit

Die Herleitung der Drehgeschwindigkeitsdifferenzialgleichung erfolgt analog zu der Her-
leitung der Geschwindigkeitsdifferenzialgleichung. Es sind lediglich die Kräfte durch die
Momente, der Impuls durch den Drehimpuls (Drall), die Geschwindigkeit durch die Dreh-
geschwindigkeit und die skalare Masse durch den Tensor der Trägheitsmomente zu erset-
zen:
Drehimpulssatz: „Das Moment Q ist die zeitliche Änderung des Drehimpulses D“:

dD
dt = Q

Ausgedrückt im flugzeugfesten Koordinatensystem:
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(
dD
dt

)
f

= Qf

Inertiale Ableitung:

Ḋf +ΩKf ×Df = Qf

„Drehimpuls ist Trägheitstensor mal Drehgeschwindigkeit“:

(If ·ΩKf )˙+ΩKf × (If ·ΩKf ) = Qf

Konstanter Trägheitstensor:

If · Ω̇Kf +ΩKf × (If ·ΩKf ) = Qf

Gesamtmoment aus Triebwerk und Aerodynamik:

If · Ω̇Kf +ΩKf × (If ·ΩKf ) = QF
f +QA

f

Transformation des aerodynamischen Moments:

If · Ω̇Kf +ΩKf × (If ·ΩKf ) = QF
f +MfaQ

A
a

Auflösen nach der Ableitung:

Ω̇Kf = I−1
f ·

(
QF
f +MfaQ

A
a −ΩKf × (If ·ΩKf )

)
Der Trägheitstensor kann - als Matrix - leider nicht aus dem Kreuzprodukt ausgeklammert
werden. Aus dem gleichen Grund berechnet sich sein Kehrwert durch reguläre Matrizenin-
version.

Der Trägheitstensor

Der Trägheitstensor beschreibt, analog zu der Masse bei translatorischen Bewegungen, die
Trägheit, mit der sich das System einer Drehbewegungsänderung widersetzt. Während
aber die Masse als skalare Größe in allen translatorischen Richtungen gleich groß ist,
unterscheiden sich die Drehträgheiten je nach betrachteter Drehachse.
Im flugzeugfesten Koordinatensystem lautet der (symmetrische) Trägheitstensor:

If =

 Ixf −Ixyf −Ixzf
−Ixyf Iyf −Iyzf
−Ixzf −Iyzf Izf


Auf seiner Hauptdiagonale befinden sich die Trägheitsmomente:
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Ixf =
∫ (

y2
f + z2

f

)
· dm

Iyf =
∫ (

x2
f + z2

f

)
· dm

Izf =
∫ (

x2
f + y2

f

)
· dm

Ein Trägheitsmoment stellt, anschaulich interpretiert, also die Summe (Integral) aller infi-
nitesimal kleinen Masseteilchen multipliziert mit dem Quadrat ihres jeweiligen Hebelarms
(pythagoräischer Abstand von der entsprechenden Drehachse) dar.
Die Nicht-Diagonalelemente des Trägheitstensors heißen Deviationsmomente:

Ixyf =
∫

(xf · yf ) · dm

Ixzf =
∫

(xf · zf ) · dm

Iyzf =
∫

(yf · zf ) · dm

Bei einem Deviationsmoment werden die Masseteilchen formal mit jeweils zwei Hebelar-
men (Positionskoordinaten) multipliziert, was zur Folge hat, dass bei symmetrischen Flug-
zeugen Ixyf und Iyzf verschwinden. Wenn nämlich bei einem Flugzeug die xf -zf -Ebene
eine Symmetrieebene darstellt, bedeutet dies, dass es für jedes Masseteilchen auf der
rechten Seite der Symmetrieebene ein entsprechendes (identisches) Masseteilchen auf der
linken Seite gibt. Beide unterscheiden sich nur durch das Vorzeichen ihrer yf -Koordinate
(rechts positiv, links negativ), sodass das Integral (die Summe) immer dann verschwindet,
wenn der Integrand einen yf -Faktor beinhaltet:
Symmetrisches Flugzeug:

Ixyf = Iyzf = 0

Der Trägheitstensor beinhaltet dann neben den Trägheitsmomenten nur noch das Devia-
tionsmoment Ixzf :

If =

 Ixf 0 −Ixzf
0 Iyf 0
−Ixzf 0 Izf

 (5.2)

Werden die flugzeugfesten Achsen in Richtung der Hauptträgheitsachsen definiert, dann
(und nur dann) verschwindet auch das letzte Deviationsmoment:

Ixzf = 0
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Wirkung der Deviationsmomente Überträgt man das zweite Newton’sche Axiom

F = m · a

auf die Drehbewegung, so wird aus der Kraft F das Moment Q, aus der Beschleunigung
a die Drehbeschleunigung Ω̇ und aus der skalaren Masse m der Trägheitstensor I:

Q = I · Ω̇

Die Auflösung nach der Drehbeschleunigung lautet dann:

Ω̇ = I−1Q (5.3)

Die Inversion des Trägheitstensors lässt sich noch relativ übersichtlich analytisch durch-
führen. Die Inverse einer Matrix kann bekanntermaßen aus dem Quotienten ihrer Adjunk-
tenmatrix und ihrer Determinante berechnet werden:

I−1 = 1
|I|
· Iadj

Unter Verwendung von Gleichung (5.2) ergibt sich dann (wobei der Index f aus Über-
sichtlichkeitsgründen weg gelassen wurde):

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz


−1

= 1
IxIyIz − I2

xzIy

 IyIz 0 IxzIy
0 IxIz − I2

xz 0
IxzIy 0 IxIy



=


Iz

IxIz−I2
xz

0 Ixz
IxIz−I2

xz

0 1
Iy

0
Ixz

IxIz−I2
xz

0 Ix
IxIz−I2

xz


Wird nun dieser inverse Trägheitstensor benutzt, um in Gleichung (5.3) den Zusammen-
hang zwischen Drehbeschleunigung Ω̇ und Drehmoment Q herzustellen

Ω̇ = I−1 ·Qṗq̇
ṙ

 =


Iz

IxIz−I2
xz

0 Ixz
IxIz−I2

xz

0 1
Iy

0
Ixz

IxIz−I2
xz

0 Ix
IxIz−I2

xz


LM
N



so zeigt die erste Zeile

ṗ = Iz
IxIz − I2

xz

L+ Ixz
IxIz − I2

xz

N
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dass eine Rollbeschleunigung ṗ nicht nur durch ein Rollmoment L erzeugt wird, sondern
dass auch ein Giermoment N über das Deviationsmoment Ixz zur Gesamtrollbeschleuni-
gung beiträgt. Andersherum argumentiert bewirkt ein reines Giermoment also nicht nur
eine Gierbeschleunigung sondern eben auch eine parasitäre Rollbeschleunigung.

Seitenleitwerk

zf

xf

N, r

p

Abbildung 5.14: Bei einem reinen Giermoment reagiert das Flugzeug (zusätzlich zur Gier-
beschleunigung) wegen des „Zurückbleibens“ des Seitenleitwerks auch mit einer Rollbe-
schleunigung.

5.6 Quaternionen

Die nicht orthogonale Transformationsmatrix in der Lagedifferenzialgleichung (5.1) bein-
haltet die Quotienten

sinΦ tanΘ = sinΦ sinΘ
cosΘ , cosΦ tanΘ = cosΦ sinΘ

cosΘ ,
sinΦ
cosΘ,

cosΦ
cosΘ

deren Nenner für einen Längsneigungswinkel Θ von ±π
2 verschwindet. Wenn zusätzlich der

Hängewinkel Φ ein Vielfaches von π
2 beträgt, wird der entsprechende Quotient unbestimmt(

0
0

)
, ansonsten nehmen die Quotienten unendlich große Werte an. Eine Simulation bricht

in allen Fällen mit einer Fehlermeldung ab.
Physikalisch-anschaulich äußert sich das Unbestimmtheitsproblem beispielsweise bei ei-
nem senkrecht nach unten ausgerichteten Flugzeug

(
Θ = −π

2

)
durch das Zusammenfallen

der erdfesten z- und der flugzeugfesten x-Achse. Sowohl ein „Gieren“ mit Ψ̇ um die zg-
Achse als auch ein Rollen mit Φ̇ um die xf -Achse führen jetzt zur gleichen Bewegung um
die senkrechte Flugzeuglängsachse (Gimbal Lock).
Zur Lösung des Problems kann man in der Lagedifferenzialgleichung als Zustandsgrö-
ßen statt der drei Lagewinkel [Φ Θ Ψ ] die vier Komponenten einer Quaternion [ a b c d ]
verwenden.

5.6.1 Eigenschaften der Quaternionen

Quaternionen sind – ähnlich wie die komplexen Zahlen – eine Erweiterung der reellen Zah-
len. Während eine komplexe Zahl z aus einem Realteil a und einem skalaren Imaginärteil
b besteht: z = a+ b · i, besitzt eine Quaternion Z einen Realteil a und einen vektoriellen
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Imaginärteil [ b c d ], dessen Komponenten jeweils mit ihrer eigenen imaginären Einheit i,
j und k multipliziert werden:

Z = a+ b · i + c · j + d · k

Die imaginären Einheiten sind wie bei den komplexen Zahlen definiert:

i2 = j2 = k2 = −1

Zusätzlich ergibt das Produkt zweier unterschiedlicher imaginärer Einheiten die dritte
und es ist anti-kommutativ (Vorzeichenwechsel bei Reihenfolgevertauschung):

i · j = k j · k = i k · i = j
j · i = −k k · j = −i i · k = −j

Die Summe zweier Quaternionen berechnet sich komponentenweise

Z1 + Z2 = (a1 + b1i + c1j + d1k) + (a2 + b2i + c2j + d2k)
= (a1 + a2) + (b1 + b2) i + (c1 + c2) j + (d1 + d2) k

während beim Quaternionenprodukt die Vorzeichen der Produkte der imaginären Einhei-
ten berücksichtigt werden müssen:

Z1 · Z2 = (a1 + b1i + c1j + d1k) · (a2 + b2i + c2j + d2k)
= (a1a2 − b1b2 − c1c2 − d1d2)

+ (a1b2 + b1a2 + c1d2 − d1c2) i
+ (a1c2 − b1d2 + c1a2 + d1b2) j
+ (a1d2 + b1c2 − c1b2 + d1a2) k

Die konjugierte Quaternion Z ergibt sich – wie bei den komplexen Zahlen – durch ein
negatives Vorzeichen vor dem Imaginärteil:

Z = a+ bi + cj + dk = a− (bi + cj + dk) = a− bi− cj− dk (5.4)

Das Produkt einer Quaternion mit ihrer Konjugierten ist rein reell

Z · Z = (a+ bi + cj + dk) · (a− bi− cj− dk)
= (aa+ bb+ cc+ dd)

+ (−ab+ ba− cd+ dc) i
+ (−ac+ bd+ ca− db) j
+ (−ad− bc+ cb+ da) k

= a2 + b2 + c2 + d2

113



und entspricht dem Betragsquadrat |Z|2 der Quaternion:

|Z| =
√
Z · Z =

√
a2 + b2 + c2 + d2

Jede Quaternion mit einer Länge ungleich null lässt sich mittels Division durch ihren
Betrag in ihre Einheitsquaternion überführen:

Z0 = Z

|Z|
= a

|Z|
+ b

|Z|
i + c

|Z|
j + d

|Z|
k (5.5)

5.6.2 Berechnung der Quaternion aus dem Drehwinkel und der
Drehachse

In Gleichung (4.1) ist die TransformationsmatrixMfg definiert, die aus trigonometrischen
Funktionen der Eulerwinkel Φ, Θ und Ψ besteht und die einen Vektor v = [ x y z ]T vom
erdfesten (Index g) ins flugzeugfeste (Index f) Koordinatensystem transformiert:

xfyf
zf

 =

 cosΘ cosΨ cosΘ sinΨ − sinΘ
sinΦ sinΘ cosΨ − cosΦ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ sinΦ cosΘ
cosΦ sinΘ cosΨ + sinΦ sinΨ cosΦ sinΘ sinΨ − sinΦ cosΨ cosΦ cosΘ


xgyg
zg


(5.6)

Die gleiche Transformation kann nun auch mit einer Quaternion realisiert werden.

xg

xg, yg

xf

yg

yf

zg
zf

n
X

X

X

Abbildung 5.15: Gesamtdrehung vom erdfesten ins flugzeugfeste Koordinatensystem mit
dem Winkel Ξ um die Drehachse n
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Dazu werden die in Abbildung 4.8 dargestellten drei Einzeldrehungen mit Ψ , Θ und Φ,
die nötig sind, um das erdfeste in das flugzeugfeste Koordinatensystem zu überführen,
zu der in Abbildung 5.15 veranschaulichten Gesamtdrehung mit dem Winkel Ξ um die
Drehachse n = [nx ny nz ]T zusammengefasst. (Die Drehachse hat dabei in beiden Koor-
dinatensystemen die gleichen Koordinaten, da sich das flugzeugfeste Koordinatensystem
ja genau um die Drehachse herum dreht und sich die Koordinaten der Drehachse dabei
nicht verändern.) Unter der Voraussetzung, dass der Drehachsenvektor n ein Einheitsvek-
tor ist (also seine Länge gemäß Gleichung (5.5) auf eins normiert wurde), lässt sich aus
Drehwinkel und Drehachse die zugehörige Einheitsquaternion ZD aufbauen:

ZD = a+ bi + cj + dk

= cos
(
Ξ

2

)
+ nx · sin

(
Ξ

2

)
i + ny · sin

(
Ξ

2

)
j + nz · sin

(
Ξ

2

)
k

(5.7)

5.6.3 Berechnung des Drehwinkels und der Drehachse aus der
Quaternion

Bei gegebener Quaternion ZD = a+ bi + cj + dk berechnen sich der zugehörige Drehwin-
kel Ξ und die Drehachse n = [nx ny nz ]T direkt aus Gleichung (5.7). Der Realteil der
Quaternion liefert den Drehwinkel:

a = cos
(
Ξ

2

)
⇒ Ξ = 2 arccos (a)

Mit dem gerade berechneten Drehwinkel ergibt sich die Drehachse dann aus dem Imagi-
närteil der Quaternion:

bi + cj + dk = nx · sin
(
Ξ

2

)
i + ny · sin

(
Ξ

2

)
j + nz · sin

(
Ξ

2

)
k

⇒ n =



nx

ny

nz


=



b

sin
(
Ξ
2

)
c

sin
(
Ξ
2

)
d

sin
(
Ξ
2

)



5.6.4 Berechnung der Eulerwinkel aus der Transformationsma-
trix

Aus einzelnen Elementen der Transformationsmatrix in Gleichung (5.6) ergeben sich Glei-
chungen, um die Eulerwinkel zu berechnen:
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M13 = − sinΘ (5.8)
M11 = cosΘ cosΨ (5.9)
M12 = cosΘ sinΨ (5.10)
M23 = sinΦ cosΘ (5.11)
M33 = cosΦ cosΘ (5.12)

Der Längsneigungswinkel folgt direkt aus Gleichung (5.8):

− sinΘ = M13 ⇒ Θ = − arcsinM13 (5.13)

Aus dem Quotienten der Gleichungen (5.10) und (5.9) berechnet sich der Azimut

cosΘ sinΨ
cosΘ cosΨ = tanΨ = M12

M11
⇒ Ψ = arctan

(
M12

M11

)
(5.14)

und der Quotient der Gleichungen (5.11) und (5.12) führt zum Hängewinkel:

sinΦ cosΘ
cosΦ cosΘ = tanΦ = M23

M33
⇒ Φ = arctan

(
M23

M33

)
(5.15)

Um bei der programmtechnischen Umsetzung für Ψ und Φ den vollen Winkelbereich
(−π . . . π) zu erhalten, muss die in den meisten Programmiersprachen vorhandene atan2-
Funktion verwendet werden, die auch mit den Singularitäten umgehen kann, die bei einem
„normalen” Arkustangens auftreten, wenn die Nenner der Gleichungen (5.14) oder (5.15)
verschwinden, weil ein Winkel π2 beträgt. In manchen Veröffentlichungen wird vorgeschla-
gen, nach der Berechnung des Längsneigungswinkels gemäß Gleichung (5.13), diesen in
die Gleichungen (5.9) - (5.12) einzusetzen, um mit arcsin- oder arccos-Funktionen Ψ und
Φ zu berechnen. Auf diese Weise würden Ψ und Φ allerdings fälschlicherweise auf die
Wertebereiche (−π

2 . . .
π
2 ) bzw. (0 . . . π) eingeschränkt, da arcsin und arccos nur in diesen

Bereichen Werte liefern.

5.6.5 Berechnung der Transformationsmatrix aus der Quaterni-
on

Die konjugierte Quaternion ZD zu der in Gleichung (5.7) definierten Quaternion lautet
nach Gleichung (5.4):

ZD = a− bi− cj− dk

Auch der zu transformierende Vektor vg = [ xg yg zg ]T wird in Form einer Quaternion Zg
dargestellt:

Zg = 0 + xgi + ygj + zgk
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Die zu Gleichung (5.6) analoge Transformation ins flugzeugfeste Koordinatensystem ge-
schieht dann mittels zweier Quaternionenprodukte

Zf = ZD · Zg · ZD
= (a− bi− cj− dk) · (0 + xgi + ygj + zgk) · (a+ bi + cj + dk)
= 0

+
((
a2 + b2 − c2 − d2

)
xg + 2 (bc+ ad) yg + 2 (bd− ac) zg

)
i

+
(
2 (bc− ad)xg +

(
a2 − b2 + c2 − d2

)
yg + 2 (cd+ ab) zg

)
j

+
(
2 (bd+ ac)xg + 2 (cd− ab) yg +

(
a2 − b2 − c2 + d2

)
zg
)
k

(5.16)

wobei die Quaternion

Zf = 0 + xf i + yf j + zfk

die Komponenten des transformierten Vektors vf = [ xf yf zf ]T beinhaltet. Gleichung (5.16)
kann übersichtlicher in Matrixschreibweise dargestellt werden

xfyf
zf

 =

(a2 + b2 − c2 − d2) 2 (bc+ ad) 2 (bd− ac)
2 (bc− ad) (a2 − b2 + c2 − d2) 2 (cd+ ab)
2 (bd+ ac) 2 (cd− ab) (a2 − b2 − c2 + d2)


xgyg
zg

 (5.17)

sodass die Transformationsmatrix direkt aus den Quaternionenkomponenten berechnet
werden kann:

Mfg =

(a2 + b2 − c2 − d2) 2 (bc+ ad) 2 (bd− ac)
2 (bc− ad) (a2 − b2 + c2 − d2) 2 (cd+ ab)
2 (bd+ ac) 2 (cd− ab) (a2 − b2 − c2 + d2)

 (5.18)

Wenn in einer Simulation die Eulerwinkel nicht explizit benötigt werden, kann die aus
den Komponenten der Quaternion aufgebaute Transformationsmatrix Mfg aus Glei-
chung (5.18) direkt in den Differenzialgleichungen der Bahngeschwindigkeit und der Posi-
tion verwendet werden, sodass dann keine trigonometrischen Funktionen der Eulerwinkel
berechnet werden müssen und sich der Rechenaufwand verringert.

5.6.6 Berechnung der Eulerwinkel aus der Quaternion

Durch das Einsetzen der entsprechenden Elemente der Transformationsmatrix aus Glei-
chung (5.18) in die Gleichungen (5.13) - (5.15) berechnen sich die Eulerwinkel direkt aus
den Quaternionenkomponenten:

Θ = − arcsinM13 = − arcsin (2 (bd− ac)) = arcsin (2 (ac− bd)) (5.19)

Ψ = arctan
(
M12

M11

)
= arctan

(
2 (bc+ ad)

a2 + b2 − c2 − d2

)
(5.20)

117



Φ = arctan
(
M23

M33

)
= arctan

(
2 (cd+ ab)

a2 − b2 − c2 + d2

)
(5.21)

Natürlich muss bei einer numerischen Umsetzung der Gleichungen (5.19) - (5.21) auch
hier die atan2-Funktion verwendet werden.

5.6.7 Berechnung der Quaternion aus den Eulerwinkeln

Die in Gleichung (5.16) dargestellte Transformation vom geodätischen ins flugzeugfeste
Koordinatensystem mit Hilfe der Gesamtquaternion ZD lässt sich auch von innen nach
außen aus den drei Einzelquaternionen ZΨ , ZΘ und ZΦ aufbauen:

Zf = ZΦ ·
(
ZΘ ·

(
ZΨ · Zg · ZΨ

)
· ZΘ

)
· ZΦ

=
(
ZΦ · ZΘ · ZΨ

)
· Zg · (ZΨ · ZΘ · ZΦ)

= (ZΨ · ZΘ · ZΦ)︸ ︷︷ ︸
ZD

·Zg · (ZΨ · ZΘ · ZΦ)︸ ︷︷ ︸
ZD

(5.22)

Dabei wird das bei Quaternionen geltende Assoziativgesetz beachtet und die Tatsache
berücksichtigt, dass die Konjugierte eines Quaternionenproduktes gleich dem Produkt
der einzelnen Konjugierten in umgekehrter Reihenfolge ist.
Die Einzelquaternionen werden entsprechend Gleichung (5.7) aus den jeweiligen Drehwin-
keln (Ψ , Θ und Φ) und den zugehörigen Drehachsen (nΨ = [ 0 0 1 ]T , . . . ) aufgebaut:

ZΨ = cos
(
Ψ

2

)
+ 0 · sin

(
Ψ

2

)
i + 0 · sin

(
Ψ

2

)
j + 1 · sin

(
Ψ

2

)
k

= cos
(
Ψ

2

)
+ sin

(
Ψ

2

)
k

ZΘ = cos
(
Θ

2

)
+ 0 · sin

(
Θ

2

)
i + 1 · sin

(
Θ

2

)
j + 0 · sin

(
Θ

2

)
k

= cos
(
Θ

2

)
+ sin

(
Θ

2

)
j

ZΦ = cos
(
Φ

2

)
+ 1 · sin

(
Φ

2

)
i + 0 · sin

(
Φ

2

)
j + 0 · sin

(
Φ

2

)
k

= cos
(
Φ

2

)
+ sin

(
Φ

2

)
i

Gemäß Gleichung (5.22) ergibt sich die Gesamtquaternion ZD in Abhängigkeit von den
Eulerwinkeln dann als:
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ZD = ZΨ · ZΘ · ZΦ

=
(

cos
(
Ψ

2

)
+ sin

(
Ψ

2

)
k
)(

cos
(
Θ

2

)
+ sin

(
Θ

2

)
j
)(

cos
(
Φ

2

)
+ sin

(
Φ

2

)
i
)

= cos
(
Ψ

2

)
cos

(
Θ

2

)
cos

(
Φ

2

)
+ sin

(
Ψ

2

)
sin

(
Θ

2

)
sin

(
Φ

2

)
+
(

cos
(
Ψ

2

)
cos

(
Θ

2

)
sin

(
Φ

2

)
− sin

(
Ψ

2

)
sin

(
Θ

2

)
cos

(
Φ

2

))
i

+
(

cos
(
Ψ

2

)
sin

(
Θ

2

)
cos

(
Φ

2

)
+ sin

(
Ψ

2

)
cos

(
Θ

2

)
sin

(
Φ

2

))
j

+
(

sin
(
Ψ

2

)
cos

(
Θ

2

)
cos

(
Φ

2

)
− cos

(
Ψ

2

)
sin

(
Θ

2

)
sin

(
Φ

2

))
k

(5.23)

5.6.8 Berechnung der Quaternion aus der Transformationsma-
trix

Der pragmatische Weg, mit den bislang vorgestellten Werkzeugen die Quaternion aus der
Transformationsmatrix zu berechnen, würde zuerst die Eulerwinkel aus der Transforma-
tionsmatrix und dann die Quaternion aus den Eulerwinkeln ermitteln. Da dabei aber die
bekannten Probleme der Eulerwinkel (rechenzeitintensive trigonometrische Funktionen,
„gimbal lock“, vgl. Abschnitt 5.6) auftreten, wird im Folgenden eine direkte Alternative
erläutert.
Gleichung (5.18) stellt die TransformationsmatrixMfg in Abhängigkeit von den Quater-
nionenkomponenten a, b, c und d dar. Zur Berechnung der ersten Quaternionenkompo-
nente a werden die Hauptdiagonalelemente der Transformationsmatrix aufsummiert:

M11 +M22 +M33 =
(
a2 + b2 − c2 − d2

)
+
(
a2 − b2 + c2 − d2

)
+
(
a2 − b2 − c2 + d2

)
= 3a2 − b2 − c2 − d2 (5.24)

Die Bedingung, dass die Quaternion einen Betrag von eins besitzt

a2 + b2 + c2 + d2 = 1

lässt sich nach b2 auflösen

b2 = 1− a2 − c2 − d2

und in Gleichung (5.24) einsetzen

M11 +M22 +M33 = 3a2 −
(
1− a2 − c2 − d2

)
− c2 − d2 = 4a2 − 1 (5.25)

sodass Gleichung (5.25) nach der gesuchten Quaternionenkomponente aufgelöst werden
kann:
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a =
√
M11 +M22 +M33 + 1

2 (5.26)

Geschickt gewählte Differenzen zweier Matrixelemente

M23 −M32 = 2 (cd+ ab)− 2 (cd− ab) = 4ab

liefern jeweils eine Bestimmungsgleichung für die verbleibenden Quaternionenkomponen-
ten:

b = M23 −M32

4a c = M31 −M13

4a d = M12 −M21

4a (5.27)

Leider gibt es bei der Berechnung der Quaternion gemäß Gleichung (5.26) - (5.27) das
Problem, dass die Quaternionenkomponente a, die in Gleichung (5.27) in allen Nennern
auftritt, null werden kann, sodass die anderen Komponenten nicht mehr berechenbar sind.
Die Komponente a, die sich nach Gleichung (5.23) aus

a = cos
(
Ψ

2

)
cos

(
Θ

2

)
cos

(
Φ

2

)
+ sin

(
Ψ

2

)
sin

(
Θ

2

)
sin

(
Φ

2

)
ergibt, verschwindet beispielsweise, wenn ein Eulerwinkel den Wert 0 und ein anderer
den Wert π besitzt, da dann sowohl ein Kosinus als auch ein Sinus und damit beide
Summanden null werden. In diesem Fall kann die Berechnung mit der zweiten Quaternio-
nenkomponente b beginnen, indem die Diagonalelemente der Transformationsmatrix mit
anderen Vorzeichen addiert werden

M11 −M22 −M33 =
(
a2 + b2 − c2 − d2

)
−
(
a2 − b2 + c2 − d2

)
−
(
a2 − b2 − c2 + d2

)
= −a2 + 3b2 − c2 − d2

sodass sich unter Verwendung von

a2 = 1− b2 − c2 − d2

eine Bestimmungsgleichung für b ergibt:

M11 −M22 −M33 = −
(
1− b2 − c2 − d2

)
+ 3b2 − c2 − d2 = 4b2 − 1

⇒ b =
√
M11 −M22 −M33 + 1

2

Mit b können dann auch die übrigen Komponenten ermittelt werden:
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c = M12 +M21

4b d = M13 +M31

4b a = M23 −M32

4b
Insgesamt gibt es vier Sätze von Bestimmungsgleichungen, je nachdem, mit welchen Dia-
gonalelementvorzeichen und damit welcher Quaternionenkomponente begonnen wird:

a =
√
M11 +M22 +M33 + 1

2 b = M23 −M32

4a c = M31 −M13

4a d = M12 −M21

4a

b =
√
M11 −M22 −M33 + 1

2 c = M12 +M21

4b d = M13 +M31

4b a = M23 −M32

4b

c =
√
−M11 +M22 −M33 + 1

2 d = M23 +M32

4c a = M31 −M13

4c b = M12 +M21

4c

d =
√
−M11 −M22 +M33 + 1

2 a = M12 −M21

4d b = M13 +M31

4d c = M23 +M32

4d
Da es sich bei der zu berechnenden Quaternion um eine Einheitsquaternion handelt,
muss mindestens eine ihrer Komponenten signifikant von null verschieden sein, sodass
mit dieser begonnen werden kann. In der numerischen Praxis kann einfach nach dem
größten Radikanten ±M11 ±M22 ±M33 + 1 gesucht werden, um zu entscheiden, welcher
Satz von Bestimmungsgleichungen verwendet wird.

5.6.9 Differenzialgleichung der Quaternionen

Unter der wichtigen Annahme, dass die Quaternion Z = a+ bi+ cj+dk eine Einheitsqua-
ternion ist, lässt sich die Lagedifferenzialgleichung (5.1) durch die sehr kompakte Quater-
nionendifferenzialgleichung ersetzen:

Ż = 1
2 · Z · ZΩ (5.28)

Dabei ist ZΩ eine reine Quaternion (mit verschwindendem Realteil), deren Imaginärteil
aus den drei Elementen pKf , qKf und rKf des flugzeugfesten Bahndrehgeschwindigkeits-
vektors ΩKf besteht:

ZΩ = 0 + pKf i + qKf j + rKfk

Auf der rechten Seite der Quaternionendifferenzialgleichung (5.28) kann das Quaternio-
nenprodukt ausmultipliziert werden:

Ż = 1
2 · Z · ZΩ

= 1
2 · (a+ bi + cj + dk) · (0 + pKf i + qKf j + rKfk)

= 1
2 · { (−pKf · b− qKf · c− rKf · d)

+ (pKf · a+ rKf · c− qKf · d) i
+ (qKf · a− rKf · b+ pKf · d) j
+ (rKf · a+ qKf · b− pKf · c) k }

(5.29)
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5.6.10 Numerische Simulation

Häufig - beispielsweise für die numerische Simulation - wird Gleichung (5.29) in Matrix-
schreibweise dargestellt, indem die Quaternion Z = a+ bi + cj + dk in Form eines reellen
Spaltenvektors Z = [ a b c d ]T und die rechte Seite von Gleichung (5.29) als Matrix-
Vektor-Produkt ausgedrückt wird:

Ż =


ȧ

ḃ
ċ

ḋ

 = 1
2


0 −pKf −qKf −rKf
pKf 0 rKf −qKf
qKf −rKf 0 pKf
rKf qKf −pKf 0

 ·

a
b
c
d

 = 1
2 ·MΩ ·Z (5.30)

Während einer längeren Simulation können unvermeidliche numerische Fehler dazu führen,
dass die Voraussetzung für Gleichung (5.30), nämlich die Tatsache, dass es sich bei Z um
eine Einheitsquaternion handelt, nicht mehr erfüllt ist. Um diesen Fehler möglichst klein
zu halten, bietet sich eine einfache Proportionalregelung an. Der Regelfehler ∆Z = 1−|Z|,
also die Abweichung des Quaternionenbetrags von eins, wird dabei mit dem aktuellen
Zustand Z skaliert und über einen P-Regler mit dem Verstärkungsfaktor K auf alle
Komponenten des Quaternionenintegrators zurückgeführt. Die erweiterte Gleichung (5.30)
lautet dann:

Ż = 1
2 ·MΩ ·Z +K ·∆Z ·Z

= 1
2 ·MΩ ·Z +K (1− |Z|)Z

= 1
2 ·MΩ ·Z +K

(
1−
√
a2 + b2 + c2 + d2

)
Z

(5.31)

Um Rechenzeit zu sparen, kann der Betrag in Gleichung (5.31) durch das Betragsquadrat
ersetzt werden, ohne das Regelverhalten qualitativ zu verändern:

Ż = 1
2 ·MΩ ·Z +K

(
1−

(
a2 + b2 + c2 + d2

))
Z (5.32)

Wie bei jeder Reglerauslegung muss für die Reglerverstärkung K ein Kompromiss gefun-
den werden. Ist K zu klein, kann der Quaternionenbetrag signifikant von eins abweichen,
während ein zu großes K zu einer Versteifung des zu simulierenden Systems führt, mit
der Folge von längeren Rechenzeiten und der Gefahr von numerischer Instabilität.
Das vorgestellte Verfahren zur Wahrung der Quaternioneneinheitslänge hat den Vorteil,
dass es dabei nicht nötig ist, die Quaternion – die ja Bestandteil des Zustandsvektors der
Simulation ist – direkt ändern zu müssen. Wenn die Simulationsumgebung allerdings das
direkte Setzen von Zustandsgrößen ohne größeren Aufwand gestattet, kann auch einfach
nach jedem Integrationsschritt die Quaternion mittels Division durch ihren Betrag wieder
zu einer Einheitsquaternion gemacht werden.
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Kapitel 6

Reglerauslegung

6.1 Eigenbewegung

6.1.1 Aufteilung der Zustandsgrößen in Längs- und Seitenbewe-
gung

ΩK VK Φ s

Längsbewegung qK uK wK Θ x z

Seitenbewegung pK rK vK Φ Ψ y

Tabelle 6.1: Zustandsgrößen der Längs- und Seitenbewegung

6.1.2 Längsbewegung

DGl

LB

AGl

LB

F

h

qK

uK

Q

wK

x
z

H

a

g

VK

Eingangs-
größen

Zustands-
größen

Ausgangs-
größen

Abbildung 6.1: Differenzial- und Ausgangsgleichungen der Längsbewegung (ohne Wind)
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j.Im(s)

Re(s)

Phygoide
Anstellwinkel-
schwingung

Abbildung 6.2: Polverteilung der Längsbewegung

Anstellwinkelschwingung
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Abbildung 6.3: Anstellwinkelschwingung

• „α-Schwingung“

• Nickschwingung in qK , α, Θ

• Hohe Frequenz (z. B.: f = 0.1 Hz, T = 10 s)

• Mittlere Dämpfung (z. B.: D = 0.5)
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Phygoide
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Abbildung 6.4: Phygoide

• „Energieschwingung“

• Bahnschwingung in Vk, γ

• Niedrige Frequenz (z. B.: f = 0.01 Hz, T = 100 s)

• Kann instabil werden (z. B.: D = 0)

6.1.3 Seitenbewegung

DGl

SB

AGl

SB

x

z

pK

rK

F

vK

Y
y

b

c

Eingangs-
größen

Zustands-
größen

Ausgangs-
größen

Abbildung 6.5: Differenzial- und Ausgangsgleichungen der Seitenbewegung (ohne Wind)
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j.Im(s)

Re(s)

Spiralbewegung

Rollbewegung

Taumelschwingung

Abbildung 6.6: Polverteilung der Seitenbewegung

Taumelschwingung
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Abbildung 6.7: Taumelschwingung

• Drehschwingung in β, Ψ , Φ, pk, rk

• Hohe Frequenz (z. B.: f = 0.1 Hz, T = 10 s)

• Niedrige Dämpfung (z. B.: D = 0.1)

Rollbewegung

• „Rolltiefpass“, „Rollverzögerung“

• Aperiodische Drehbewegung in pk, Φ

• Zeitkonstante: z. B.: T = 1 s
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Spiralbewegung

• „Offener Integrator“ mit „etwas“ Rückführung

• ξ-Block → stationärer Hängewinkel

• Kann instabil sein → Spiralsturz

6.2 Trimmrechnung

Trimmen ist das Berechnen von Trimmgrößen (Eingangs- und Zustandsgrößen), sodass
vorgegebene Trimmforderungen (Ausgangs- und Ableitungsgrößen) erfüllt sind. Durch die
Trimmrechnung wird der (zumeist stationäre) Anfangszustand einer Simulation festgelegt.

6.2.1 Horizontaler Geradeausflug

Aufgabe: Es soll ein unbeschleunigter, schiebefreier, horizontaler Geradeausflug ohneWind
ausgetrimmt werden. Die relevanten Eingangs-, Zustands-, und Ausgangsgrößen der Längs-
bewegung lauten:
Eingangsgrößen:

u =
[
F η

]T
Zustandsgrößen:

x =
[
qKf uKf wKf Θ

]T
Ausgangsgrößen:

v =
[
VK γ α · · ·

]T
Erster Gedanke: Der horizontale Flug wird durch die Festlegung einer bestimmten

Bahngeschwindigkeit VK und durch die Forderung nach einem verschwindenden
Bahnwinkel γ = 0 definiert. Diese beiden Trimmforderungen können durch die
beiden Trimmgrößen Schub F und Höhenruder η erfüllt werden. Schub und Hö-
henruder stellen dabei sowohl den Energie- als auch den Momentenhaushalt der
Längsbewegung so ein, dass ein unbeschleunigter Flug in konstanter Höhe möglich
ist.

Zweiter Gedanke: Leider beeinflussen, physikalisch gesehen, Schub und Höhenruder
nicht direkt die gewünschte Bahngeschwindigkeit und den Bahnwinkel. Schub und
Höhenruder erzeugen Kräfte und Momente, die unmittelbar nur zu Beschleunigun-
gen und Drehbeschleunigungen führen. Die (Dreh-)Beschleunigungen werden dann
von den (Dreh-)Geschwindigkeitsintegratoren der Kinetik zu Geschwindigkeiten und
Drehgeschwindigkeiten integriert. Im zweiten Integrationsschritt folgen daraus Po-
sition und Lage(-Winkel).
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Beispielsweise erzeugt das Höhenruder η im Wesentlichen ein Nickmoment M , das
über das Nickträgheitsmoment unmittelbar zu einer Nickbeschleunigung q̇K führt.
Die erste Integration macht dann aus der Nickbeschleunigung eine Nickgeschwin-
digkeit qK und der zweite Integrator erzeugt daraus den Nickwinkel Θ. Durch das
Nicken verändert sich gleichzeitig der Anstellwinkel α, was zu einer Veränderung des
Auftriebs A führt. Der veränderte Auftrieb (Vertikalkraft) erzeugt dann eine Verti-
kalbeschleunigung ẇK , die wiederum zu einer Vertikalgeschwindigkeit wK integriert
wird. Erst aus dieser Vertikalgeschwindigkeit resultiert eine vertikale Positionsän-
derung und damit die gewünschte Änderung des Bahnwinkels γ.
Langer Rede kurzer Sinn: Ein Trimmalgorithmus kann nicht direkt durch „Wackeln“
an der Trimmgröße Höhenruder die gewünschte Trimmforderung Bahnwinkel ein-
stellen.

Dritter Gedanke: Dann müssen auch die an der Definition des gewünschten Flugzu-
stands beteiligten internen Zustandsgrößen (qKf , uKf , wKf , Θ) mitgetrimmt wer-
den. Die Bestimmung der Nickgeschwindigkeit qKf ist einfach. Sie muss für einen
stationären Geradeausflug natürlich verschwinden, da das Flugzeug sonst permanent
auf- bzw. abnicken würde. Für die Bestimmung der verbleibenden drei Trimmgrößen
(uKf , wKf , Θ) müssen jetzt weitere drei Trimmforderungen gefunden werden. Diese
folgen unmittelbar aus der Forderung nach einem unbeschleunigten Flug: Es dür-
fen weder Nickbeschleunigungen noch translatorische Beschleunigungen auftreten:
q̇Kf = u̇Kf = ẇKf = 0.
Wenn der Flugzustand dann ausgetrimmt ist, folgen alle weiteren Ausgangsgrößen
automatisch: Der Anstellwinkel α beispielsweise errechnet sich bei reiner Längsbe-
wegung ohne Wind direkt aus: α = Θ − γ.

6.2.2 Verallgemeinerung

Die am Beispiel der Flugzeuglängsbewegung erlangten Erkenntnisse lassen sich verallge-
meinern. Ein allgemeines nichtlineares dynamisches System lässt sich durch eine Vektor-
differenzialgleichung und eine algebraische Vektorausgangsgleichung beschreiben:
Vektordifferenzialgleichung:

ẋ = f (x, u)

Vektorausgangsgleichung:

v = g (x, u)

f(x,u) g(x,u)
u x

.
x v

Abbildung 6.8: Allgemeines nichtlineares dynamisches System
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Trimmforderungen (bekannt) Elemente von ẋ und v (linke Seite der Gleichungen)

Trimmgrößen (gesucht) Elemente von x und u (rechte Seite der Gleichungen)

Vorgehensweise

1. Für jede Trimmforderung eine Trimmgröße freilassen, die die Forderung erfüllen
(oder wenigstens beeinflussen) kann.

2. Für jede Trimmgröße eine Trimmforderung aufstellen, durch die die Trimmgröße
definiert (oder wenigstens eingeschränkt) wird.

3. Die Elemente von x und u, die keine Trimmgrößen sind, auf feste Werte setzen.

4. Die Elemente von ẋ und v, die keine Trimmforderungen sind, folgen automatisch.

6.2.3 Triebwerksdynamik

Jedes dynamische Untersystem (Stellerdynamik, Sensoren, Filter, Regler, . . . ) des zu trim-
menden Gesamtsystems muss „mitgetrimmt“ werden. Wird beispielsweise ein Triebwerk
als begrenztes System erster Ordnung modelliert und wird nach dem Schubkommando Fc
gesucht, das eine gewünschte Bahngeschwindigkeit VK bewirkt, so muss der Ausgang F
des Schubintegrators als zusätzliche Trimmgröße und sein Eingang Ḟ als weitere Trimm-
forderung aufgefasst werden. Natürlich wird im ausgetrimmten Zustand der Schub F
gleich dem Schubkommando Fc sein; beide sind aber nicht bekannt und müssen daher
gemeinsam vom Trimmprogramm ermittelt werden.
Jede zusätzliche Trimmgröße erfordert genau eine zusätzliche Trimmforderung. Daher
wird für einen stationären Trimmpunkt (Schub konstant) die Ableitung des Schubes zu
null gefordert: Ḟ = 0.

1/TF

Fc Fc beg

.

-

F F VK

Abbildung 6.9: Triebwerksdynamik mit Begrenzer

Begrenzungen

Begrenzungen stellen für viele Trimmalgorithmen ernst zu nehmende Gegner dar. Üb-
licherweise variiert der Optimierer im Trimmprogramm nämlich die Trimmgrößen nach
einem mehr oder weniger intelligenten Verfahren so lange, bis das die Trimmforderungen
enthaltende Gütekriterium besser als eine vorgegebene Schranke geworden ist. Wenn aber
während dieses Suchverfahrens der Begrenzer anspricht, weil der Trimmalgorithmus die
Trimmgröße „probehalber“ über ihren Maximalwert erhöht hat, bewirkt plötzlich eine
kleine Variation der Trimmgröße gar keine Veränderung der Trimmforderungen mehr.
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Der gradientenorientierte Trimmalgorithmus „weiß dann nicht mehr, in welche Richtung
er weiteroptimieren soll“ und bricht mit einer Fehlermeldung ab.
In diesen Fällen hilft es häufig, die maximale Schrittweite der entsprechenden Trimmgröße
zu reduzieren, damit der Algorithmus die Begrenzung nicht „aus Versehen“ in einem zu
großen Schritt verletzt. Außerdem ist es natürlich sinnvoll, jede Trimmgröße auf einen
geschätzten Anfangswert zu setzen, der möglichst nahe am erwarteten Trimmpunkt liegt.
Wenn beispielsweise der maximale Schub eines Triebwerkes im Reiseflug 90 kN beträgt,
macht es sicherlich mehr Sinn, den Anfangswert der Trimmgröße Schub auf vielleicht
60 kN zu setzen als auf 0 kN oder gar 100 kN.

6.3 Basisregler

Der Basisregler dämpft die Eigenbewegung (Nick-, Gier- und Rolldämpfer) und regelt
Fahrt, Nickwinkel, Hängewinkel und Schiebewinkel. Die Kommandos für diese Eingangs-
größen des Basisreglers können entweder direkt vom Piloten (z. B. Sidestick kommandiert
rate command attitude hold für Nick- und Hängewinkel) oder von einem überlagerten
Bahnregelkreis kommen.

6.3.1 Basisregler der Längsbewegung

-

-

Flugzeug

(Längs-
bewegung)

KV

K
Q

VAc

Qc h

K
hq

qK

Q

F VA

Abbildung 6.10: Basisregler der Längsbewegung

Kηq Der Nickdämpfer verwendet das Höhenruder, um die Anstellwinkelschwingung zu
dämpfen. Dabei wird die (gemessene) Nickgeschwindigkeit quasi mit einem Sollwert
von null verglichen und das Höhenruder immer so ausgeschlagen, dass das entste-
hende Nickmoment und die daraus resultierende Nickbeschleunigung der Nickge-
schwindigkeit entgegenwirkt.
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KΘ Der Nicklageregler benutzt die gleiche Stellgröße (Höhenruder) wie der Nickdäm-
pfer und sorgt für die Regelung des Nickwinkels. Der Nickwinkelsollwert kann da-
bei direkt vom Piloten (beispielsweise mittels des longitudinalen Sidesticks) oder
von einem übergeordneten (kaskadierten) Bahnregler (Höhenregler, . . . ) vorgege-
ben werden.

KV Der Fahrtregler (Autothrottle) verwendet den Schub, um eine eingestellte Sollfahrt
zu halten. Um einen stationären Regelfehler zu verhindern, kann der Fahrtregler
einen I-Anteil besitzen.

6.3.2 Basisregler der Seitenbewegung

-
-

Flugzeug

(Seiten-
bewegung)

K
b

K
F

bc( = 0)

Fc

z

x

K
zr

K
xp

rK

pK

b

F

Abbildung 6.11: Basisregler der Seitenbewegung

Kζr Der Gierdämpfer misst die Giergeschwindigkeit und benutzt das Seitenruder, um
die Taumelschwingung zu dämpfen. Während eines stationären Kurvenflugs sollte
der Gierdämpfer möglichst nicht aktiv sein, um die dann gewollte Giergeschwindig-
keit nicht zu unterdrücken (→ Verwendung eines Hochpasses, der konstante Gier-
geschwindigkeiten nicht „durchlässt“).

Kξp Der Rolldämpfer verwendet das Querruder, um die Rollzeitkonstante zu verän-
dern.

Kβ Der Schiebewinkelregler benutzt das Seitenruder, um den Schiebewinkel zu re-
geln. Häufig, beispielsweise beim koordinierten (schiebewinkelfreien) Kurvenflug,
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soll der Schiebewinkel verschwinden (Sollwert gleich null), um eine symmetrische,
ökonomische Anströmung zu gewährleisten. Der Schiebewinkelsollwert kann bei-
spielsweise mit den Pedalen kommandiert werden oder wird vom Autopiloten vor-
gegeben (z. B. beim Decrab-Manöver zum Ausrichten des Fahrwerkes in Landebahn-
richtung beim Landeanflug mit Seitenwind).

KΦ Der Querlageregler benutzt die gleiche Stellgröße (Querruder) wie der Rolldäm-
pfer und sorgt für die Regelung des Hängewinkels. Der Hängewinkelsollwert kann
dabei direkt vom Piloten (beispielsweise mittels des lateralen Sidesticks) oder von
einem übergeordneten (kaskadierten) Bahnregler (Kursregler, . . . ) vorgegeben wer-
den.

6.4 Bahnregler

Der Bahnregler (Höhenregler und Bahnazimutregler) verwendet das „basisgeregelte“ Flug-
zeug im Sinne einer Kaskadenregelung als „modifizierte Regelstrecke“. Die Regelgrößen
des Basisreglers (Längsneigungswinkel und Hängewinkel) werden dabei direkt vom Bahn-
regler kommandiert.

6.4.1 Kaskadenregelung

GR1GR2 GS1 GS2

x 1 x
2w2 w1 y

--

modifizierter, geregelter
Streckenteil G ’S1

Abbildung 6.12: Kaskadenregelung

• Äußerer Regelkreis liefert Sollwert für inneren Regelkreis.

• Inneren Regelkreis schnell und ohne Führungsgenauigkeit auslegen.

• Äußer(st)er Regelkreis leistet Führungsgenauigkeit.
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6.4.2 Höhen- und Bahnazimutregelung

-

-

Flugzeug

+

Basisregler

KH

K
c

Hc

Fc

Qc

ccc

H

Abbildung 6.13: Höhen- und Bahnazimutregelung

KH Der Höhenregler hat in dieser Kaskadenregelung keinen direkten Zugriff auf das
Höhenruder, sondern kommandiert einen Nicklagesollwert an den Basisregler der
Längsbewegung, der dann seinerseits über das Höhenruder in den Momentenhaus-
halt des Flugzeugs eingreift, um den Längsneigungswinkel entsprechend einzustellen.
Um stationäre Führungsgenauigkeit bei der Höhenregelung zu erreichen, kann der
Höhenregler als PI(D)-Regler ausgelegt werden.

Kχ Der Bahnazimutregler regelt den Bahnazimut, indem er einen Sollwert für den
Hängewinkel an den Basisregler weitergibt. Alternativ zum Bahnazimut kann (z. B.
aus Verfügbarkeitsgründen) der Gierwinkel als Regelgröße verwendet werden.
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Schubmoment, 74, 94
Schubvektor, 93
Schubvektorangriffspunkt, 94
Schwinger zweiter Ordnung, 21, 37
Seitenbewegung, 125, 131
Seitenruder, 131
Simulation, 63
Sinus, 18
Skalarfeld, 97
Skalarprodukt, 97
Sollfahrt, 131
Sollschub, 94
Sollwert, 15
Sphärisch, 84
Spiralbewegung, 127
Sprung, 17
Sprungantwort, 23, 24
Stabilität, 28, 51, 58
Stabilitätsrand, 64
Stationär, 60
Statisch, 19
Staudruck, 89
Stellaufwand, 63
Stellerdynamik, 94
Stellgröße, 15, 75
Steuerknüppel, 75
Steuerkurs, 79
Steuerung, 16, 67
Störgrößenaufschaltung, 66
Störgröße, 15, 59
Störübertragungsfunktion, 59
Störung, 67
Symmetrisch, 110

T
Taumelschwingung, 126, 131
Tiefpass, 34, 37, 93
Tierversuch, 94

Totzeit, 47, 95
Trägheitsmoment, 110
Trägheitstensor, 109
Transformationsmatrix, 81, 114
Triebwerk, 93
Triebwerksdynamik, 129
Trimmforderung, 129
Trimmgröße, 129
Trimmrechnung, 127
Trochoide, 100
Turbulenz, 96
Tustinformel, 69

U
Überlagerungsprinzip, 20
Überschwingweite, 61
Übertragungsfunktion, 15, 24

V
Vektorausgangsgleichung, 49, 128
Vektordifferenzialgleichung, 49, 102, 128
Vektorfeld, 97
Verstärkungsfaktor, 22
Verstärkungsprinzip, 20
Verzögerungsglied, 34, 37
Verzugszeit, 61, 64
Verzweigung, 14
Voll laufen, 95
Vorhaltzeit, 45, 64
Vorsteuerung, 67
Vorwärtsübertragungsfunktion, 53

W
Wasser, 40, 94
Wasserpegel, 94
Weißes Rauschen, 96
Wendetangente, 64
Widerstand, 34, 89
Widerstandspolare, 90
Wind, 73, 96
Windfahnenstabilität, 93
Windfeld, 100
Windgeschwindigkeit, 74
Windgradient, 96

Z
Zentripetalbeschleunigung, 108
Ziegler und Nichols, 64
z-Transformation, 69
Zustandsraumdarstellung, 49
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Zustandsvariable, 49
Zustandsvektor, 102
Zykloide, 100
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