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Nomenclature

α Angle of attack (al)

χ Flight path azimuth (ch)

η Elevator angle (et)

γ Angle of climb (ga)

µ Aerodynamic yaw angle (mu)

ρ Air density (rh)

Φ Bank angle (ph)

Ψ Azimuth angle (ps)

Θ Pitch angle (th)

Ω Rotational velocity vector ( Om)

Φ Euler angle vector ( Ph)

CQ Moment coefficient vector ( C Q)

CR Force coefficient vector ( C R)

g Gravitational acceleration vector ( g)

I Tensor of the moment of inertia ( I)

MΦf Transformation matrix from the body-fixed frame to the Euler angle frame
(m phf)

Maf Transformation matrix from the body-fixed frame to the aerodynamic frame
(m af)

Mfa Transformation matrix from the aerodynamic frame to the body-fixed frame
(m fa)

Mfg Transformation matrix from the inertial frame to the body-fixed frame (m fg)
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Mgf Transformation matrix from the body-fixed frame to the inertial frame (m gf)

Q Moment vector ( Q)

R Force vector ( R)

s Position vector ( s)

V Translational velocity vector ( V)

ζ Rudder angle (ze)

CD Drag coefficient (C D)

CL Lift coefficient (C L)

Cm Pitching moment coefficient (C m)

CD0 Drag coefficient for angle of attack = 0 (C D0)

CDα2 Drag coefficient with respect to square of angle of attack (C D al2)

CDα Drag coefficient with respect to angle of attack (C D al)

CDη Drag coefficient with respect to elevator (C D et)

CLα Lift coefficient with respect to angle of attack (C L al)

CLη Lift coefficient with respect to elevator (C L et)

Clη Rolling moment coefficient with respect to elevator (C l et)

Clp Rolling moment coefficient with respect to roll rate (C l p)

Cmα Pitching moment coefficient with respect to angle of attack (C m al)

Cmη Pitching moment coefficient with respect to elevator (C m et)

Cmq Pitching moment coefficient with respect to pitch rate (C m q)

Cnη Yawing moment coefficient with respect to elevator (C n et)

Cnr Yawing moment coefficient with respect to yaw rate (C n r)

CSη Side force coefficient with respect to elevator (C S et)

E Aerodynamic force unit (E)

F Force (F)
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k Shadowing factor (k)

lµ Reference length (l mu)

m Mass (m)

p Rolling velocity (p)

q Pitching velocity (q)

r Yawing velocity (r)

S Reference area (S)

u Forward speed (u)

v Side speed (v)

w Sink speed (w)

x x-direction (to front/north ...) (x)

y y-direction (to right/east ...) (y)

z z-direction (down) (z)

Index A Aerodynamic ( A)

Index a Aerodynamic frame ( a)

Index c Command, control, setpoint ( c)

Index f Body-fixed frame ( f)

Index g Inertial frame ( g)

Index K Flight path ( K)

Index W Wind ( W)
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1. Simulink model

The purpose of the UAV is provided in [1].

1.1. General overview

The main Simulink window including all subsystems is shown in figure 1.1.

_Om_K_f_sky

_Ph_sky

_s_g_sky

_V_K_f_sky

V_A_sky

al_sky

mu_sky

V_K_sky

ga_sky

ch_sky

_V_K_g_sky

_s_g_sky  

_Ph_sky  

Sky displays

et_1_c

et_2_c

et_3_c

ze_c

_Om_K_f_sky

_Ph_sky

_s_g_sky

_V_K_f_sky

V_A_sky

al_sky

mu_sky

V_K_sky

ga_sky

ch_sky

_V_K_g_sky

Sky + Wind + Track

Real-Time Pacer
Speedup = 1

_Om_K_f_diver

_Ph_diver

_s_g_diver

_V_K_f_diver

V_A_diver

al_diver

mu_diver

V_K_diver

ga_diver

ch_diver

_V_K_g_diver
Diver + Wind + Track

vanes

_Om_K_f_diver

_Ph_diver

_s_g_diver

_V_K_f_diver

V_A_diver

al_diver

mu_diver

V_K_diver

ga_diver

ch_diver

_V_K_g_diver

_s_g_diver  

_Ph_diver  

Diver displays

z_g_c

ph_c

th_c

ps_c

_Om_K_f_sky

_Ph_sky

_s_g_sky

_V_K_g_sky

et_1_c

et_2_c

et_3_c

ze_c

Attitude and 
Altitude controller

x_f_c

y_f_c

_s_g_diver

_s_g_sky

_Ph_sky

_V_K_g_sky

ph_c

th_c

ps_c

Position controller

_Ph_diver
_Ph_sky
_s_g_sky
_s_g_diver

z_g_c

x_f_c

y_f_c
Position command

1
del_V_K_g

1
dummy

_s_g_sky

_Ph_sky

_s_g_diver

_Ph_diver

Figure 1.1.: General overview
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The top central subsystem Sky1 + Wind + Track (section 1.2) holds the model of the
UAV, its own wind process and a block computing the spherical components of the
UAV’s flight path vector. The bottom central subsystem Diver + Wind + Track contains
the corresponding models of the skydiver.

Scopes for the main signals can be found in Sky displays and Diver displays (section 1.29).
An S-Function in the lower left of figure 1.1 is used to display an animation of the UAV
and the diver [2] during the simulation. The “yellow” Real-Time Pacer block makes sure
that the simulation runs in real-time if the hardware is fast enough.

While the skydiver is uncontrolled and reacts only to its own wind inputs, the UAV
is controlled by a cascade control system. The inner (secondary, slave) Attitude and
altitude controller measures the attitude and the altitude of the UAV and uses the
actuators to maintain their values. The outer (primary, master) Position controller
measures the position of the UAV and uses the inner loop as its actuators by commanding
an attitude setpoint to the inner controller. The position setpoint for the outer controller
and for the altitude is generated in the Position command block.

Additionally, figure 1.1 contains a dummy input, a sum and an output block that are
only used during the trim process.

1.2. UAV + wind + track

The top level UAV block (figure 1.2) contains its mathematical model (section 1.3)
including actuator dynamics, aerodynamics, and kinetics, its wind process (section 1.16),
and the computation of the spherical components of its flight path vector (section 1.20).

1The name Sky is used as a synonym for the UAV including the camera throughout this paper.

9



.

  

.

10

ch_sky

9

ga_sky

8

V_K_sky

7

mu_sky

6

al_sky

5

V_A_sky

4

_V_K_f_sky

3

_s_g_sky

2

_Ph_sky

1

_Om_K_f_sky
_Om_W_g

_V_W_g

Wind

_V_K_g

V_K

ga

ch

Track

_Om_A_f

_V_A_f

et_1_c

et_2_c

et_3_c

ze_c

_Om_K_f

_Ph

_V_K_g

_s_g

_V_K_f

V_A

al

mu

Sky

1

et_1_c

2

et_2_c

3

et_3_c

4

ze_c

_Ph

_vec_g
_vec_f

M_f_g

_Ph

_vec_g
_vec_f

M_f_g 

11

_V_K_g_sky

_V_K_f

_Om_K_f

_Om_W_f

_V_W_f

Figure 1.2.: UAV + wind + track

The translational flight path velocity vector VK (i. e. the velocity of the UAV with
respect to the ground) is the sum of the aerodynamic velocity or airspeed vector VA
(i. e. the velocity of the UAV with respect to the air) and the VW (i. e. the velocity of
the air with respect to the ground):

VK = VA + VW

The same is true for the rotational velocity vectors:

ΩK = ΩA + ΩW
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Figure 1.3.: Relation between VK , VA, and VW [3]

Since we need the airspeed vectors in the body-fixed frame, we have to transform the
wind from the inertial frame (index g) to the body-fixed frame (index f) with the help
of a transformation block (section 1.26):

VAf =VKf − VWf

=VKf −Mfg · VWg

The transformation matrix Mfg utilizes the Euler angle vector (attitude)

Φ =

ΦΘ
Ψ


which therefore has to be fed back into the transformation blocks as well.

1.3. UAV overview

The UAV subsystem (figure 1.4) contains an Actuator dynamics block that saturates and
rate limits the actuators, an Aerodynamics block that computes the aerodynamic forces
RAf and moments QAf , and a Kinetics block that integrates the forces and moments
into motion, i. e. the rotational flight path velocity vector in the body-fixed frame ΩKf ,
the Euler angle vector (attitude) Φ, the position vector in the inertial frame sg, and the
translational flight path velocity vector in the body-fixed frame VKf . Additionally, the
flight path velocity vector is returned in the inertial frame VKg. The limited actuator
deflections are tunneled to the animation block in General overview via a Goto-block.
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Figure 1.4.: UAV overview

1.4. Actuator dynamics

The UAV has three vanes (figure 1.5) that can be deflected individually (elevators η1, η2,
and η3) about a horizontal axis to produce a pitching (or rolling) moment and collectively
(rudder ζ) about a vertical axis to produce a yawing moment.
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Figure 1.5.: Actuator dynamics [3]

Each elevator deflection is positive, saturated

0 ≤ η ≤ ηmax

and rate limited:
−η̇max ≤ η̇ ≤ η̇max

The rudder has symmetrical limits:

−ζmax ≤ ζ ≤ ζmax

−ζ̇max ≤ ζ̇ ≤ ζ̇max
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1.5. Aerodynamics

The aerodynamic force vector in the body-fixed frame RAf is computed as the product
of the corresponding aerodynamic force coefficient vector CRAf and the Aerodynamic
force unit E in figure 1.6:

RAf = E ·CRAf

For the moments we have to multiply the force by a reference length (mean aerodynamic
cord) lµ:

QAf = lµ · E ·CQAf
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Figure 1.6.: Aerodynamics

In the subsystem Aerodynamic velocities we compute the spherical components (VA, α,
and µ) from the airspeed vector in the body-fixed frame VAf and make the rotational
aerodynamic velocity vector ΩAf dimensionless. The aerodynamic coefficients are com-
puted as the sum of the coefficients of the Body, the Vanes and a linear damping:

CRAf = CRAfbody +CRAfvanes

CQAf = CQAfbody +CQAfvanes +CQAfdamp
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where the linear damping coefficient CQAfdamp
is the product of the diagonal damping

matrix and the dimensionless rotational aerodynamic velocity vector Ω∗
Af :

CQAfdamp
=

Clp 0 0
0 Cmq 0
0 0 Cnr

Ω∗
Af

1.6. Aerodynamic velocities

In the subsystem depicted in figure 1.7 we compute the spherical components (VA,α,
and µ) of the flight path vector from its Cartesian representation VAf according to
equation (A.7) and equation (A.8).

.

4
_Om_A_f_*

2
al

3
mu

1
V_A

atan2

acos

l_mu_sky

Mean length

Demux

2
_Om_A_f

1
_V_A_f

_x | _x |

2-Norm
of a vector

V_A

w_A_fw_A_f

u_A_f

u_A_f

v_A_f

v_A_f

Figure 1.7.: Aerodynamic velocities [3]

Additionally, we normalize the rotational velocity vector by a “time unit” in order to
make it dimensionless:

Ω∗
Af =

lµ
VA
·ΩAf

1.7. Aerodynamic force unit

The aerodynamic force unit (figure 1.8) represents a force that is proportional to the air
density ρ, the square of the air speed VA and a reference area S:

E =
ρ

2
· V 2

A · S
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Figure 1.8.: Aerodynamic force unit [3]

It is used in section 1.5 to compute the aerodynamic forces and moments from the
dimensionless coefficients.

1.8. Body

In figure 1.9 we compute the aerodynamic force and moment coefficients of the UAV’s
body with respect to the angle of attack α and the aerodynamic yaw angle µ. According
to appendix A the aerodynamic forces CRabody

and moments CQabody
of a symmetrical

body only depend on the angle of attack in the aerodynamic frame. The aerodynamic
yaw angle µ is then used (together with α) to transform the forces and moments to the
body-fixed frame via equation (A.4).
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Figure 1.9.: Aerodynamics body

In this simple linear derivative aerodynamics, the lift coefficient CLbody
(pointing towards

the negative x-axis of the aerodynamic frame) is proportional to the angle of attack with
a constant lift slope derivative CLα. Due to the axial symmetry of the body there is
no lift for α = 0. Also, the pitch moment coefficient Cm only depends on the angle of
attack, with the pitch stability derivative Cmα as a proportionality factor:

Cm = Cmα · α
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With the drag coefficient CDbody
(pointing towards the negative z-axis of the aerodynamic

frame) we have to be a little bit more flexible; Not only do we have to consider a drag
coefficient CD0 for α = 0 because of the face area, but we also have to take into account
that the induced drag is proportional to the square of the lift. Therefore, we assume a
full quadratic dependence of the drag coefficient CD on the angle of attack:

CD = CD0 + CDα · α + CDα2 · α2

In the aerodynamic frame defined in appendix A there is no aerodynamic side force, roll
moment, or yaw moment.

1.9. Vanes

While the aerodynamics of the body is modeled in the aerodynamic frame and later
transformed into the body-fixed frame, we compute the aerodynamic forces and moments
(coefficients) of the vanes directly in the body-fixed frame (figure 1.10).
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Figure 1.10.: Aerodynamic vanes

The arrangement of the three vanes of the UAV are depicted in figure 1.11 looking down
in positive zf -direction.
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Figure 1.11.: Vanes and forces as seen from above

When deflected by its “elevator” deflection angle (η1, η2, η3) each vane generates a force
(F1, F2, F3) in its deflection direction2 and a moment about the perpendicular axis.
Additionally, all vanes generate drag forces in (negative) zf -direction.

In order to use the minimum number of derivatives we decompose the vane deflection
angles into their effective angles in xf - and yf -direction.3

The computation of the effective angles according to figure 1.11 is done in the upper
middle part of figure 1.10:

ηx = η1 − cos
(π

3

)
(η2 + η3) (1.1)

ηy = sin
(π

3

)
(η2 − η3) (1.2)

Additionally, we compute an effective collective angle for the drag:

ηC = η1 + η2 + η3 (1.3)

Now we can compose the aerodynamic force coefficient vector in the body-fixed frame:

CRf =

−CLη · ηx−CSη · ηy
−CDη · ηC

 (1.4)

The moments generated by the vanes are computed accordingly: the effective x-vane
deflection generates a pitching moment about the yf -axis while an effective y-vane de-
flection results in a rolling moment about the xf -axis. The yawing moment about the

2The force can be negative. Its sign is consequently taken into account when the coefficients are sorted
into the corresponding vector CRf in equation (1.4).

3Since the aerodynamic forces and moments linearly depend on the vane deflections in this simple
model we can superpose the angles instead of the forces.
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zf -axis is caused by the concurrent deflection of all vanes about their own z-axis with
the “rudder” deflection angle ζ.

If the vane has an elevator deflection angle of η = 0 a rudder deflection ζ does not have
any effect. With increasing elevator the rudder becomes more effective. In a quick-
and-dirty4 implementation we implement this behavior by a product of both deflections
(bottom middle in figure 1.10). We can then compose the aerodynamic moment coeffi-
cient vector in the body-fixed frame:

CQf =

 Clη · ηy
Cmη · ηx
Cnζ · ζ · ηD



1.10. Shadowing factor of the aerodynamic vanes

If the aerodynamic yaw angle µ = ±π and the angle of attack α > 0 (i. e. the apparent
wind is coming from the “back”) the first (“front”) vane is shadowed by the body of
the UAV and therefore less effective. We model this effectiveness reduction by a vane
shadowing factor k (of the first vane) in the left part of figure 1.10 in the subsystem
depicted in figure 1.12.

cos

0.5

1

sin

1
mu

2
al

1
k

Figure 1.12.: Aerodynamic vanes shadowing factor

The shadowing factor k depends on α and µ:

k = 1− 1− cos(µ)

2
· sin(α) (1.5)

If α = 0 the apparent wind is flowing directly in (negative) zf -direction and no vane
effectiveness reduction should be present. Therefore, k = 1 according to equation (1.5).
The same is true for µ = 0, i. e. the apparent wind is directly hitting the first vane. The
trigonometric functions used in equation (1.5) ensure a steady effectiveness reduction
down to no effectiveness at α = π

2
∧ µ = ±π.

4One of the first optimizations of the aerodynamic model should start here to model the relationship
between yawing moment, elevator and rudder in a more realistic way.
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The surface plot in figure 1.13 illustrates the relations between α, µ, and k.
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Figure 1.13.: Shadowing factor surface plot

The considerations above are valid for the first vane. For the other vanes we add ±2
3
π

to the aerodynamic yaw angle in figure 1.12 before computing their shadowing factor.

1.11. Kinetics

The kinetics subsystem in figure 1.14 computes the following motion state vectors:

� translational velocity vector in the body-fixed frame VKf

� position vector in the inertial frame sg

� rotational velocity vector in the body-fixed frame ΩKf

� attitude vector Φ

of the UAV from the forces Rf and moments Qf acting on the mass. It contains four
(three-dimensional) vector integrators and four subsystems in which we model the non-
linear 6-DOF vector differential equations (Translational velocity differential equation,
Position differential equation, Rotational velocity differential equation, and Attitude
differential equation).
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Figure 1.14.: Kinetics [3]

1.12. Translational velocity differential equation

The translational velocity vector differential equation expressed in the body-fixed frame

V̇Kf =
Rf

m
+Mfg · gg −ΩKf × VKf

modeled in figure 1.15 computes the translational acceleration vector V̇Kf from the force
vector Rf .
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Figure 1.15.: Velocity differential equation [3]
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1.13. Position differential equation

The position vector differential equation expressed in the inertial frame

ṡg = VKg = Mgf · VKf

modeled in figure 1.16 computes the derivative of the position vector in the inertial frame
ṡg from the velocity vector in the body-fixed frame VKf .
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Figure 1.16.: Position differential equation [3]

1.14. Rotational velocity differential equation

The translational velocity vector differential equation expressed in the body-fixed frame

Ω̇Kf = I−1
f · (Qf −ΩKf × (If ·ΩKf ))

modeled in figure 1.17 computes the rotational acceleration vector Ω̇Kf from the moment
vector Qf .

If is the tensor of the moment of inertia in the body-fixed frame.
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Figure 1.17.: Rotational velocity differential equation [3]

1.15. Attitude differential equation

The attitude vector differential equation

Φ̇ =

Φ̇Θ̇
Ψ̇

 =

1 sinΦ tanΘ cosΦ tanΘ
0 cosΦ − sinΦ
0 sinΦ/cosΘ cosΦ/cosΘ

ΩKf = MΦf ·ΩKf (1.6)
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modeled in figure 1.18 computes the derivative of the attitude (Euler angle) vector Φ̇Kf
from the rotational velocity vector in the body-fixed frame ΩKf .

The non-orthogonal transformation matrix MΦf (section 1.27) contains quotients that
can result in “divide-by-zero” if Θ = ±π

2 or “undefined” gimbal lock situations if addi-
tionally Φ = ±π

2 or Φ = 0.
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Figure 1.18.: Attitude differential equation [3]

1.16. Wind

The simple wind model in figure 1.19 generates Translational wind, Turbulence, and
Rotational wind (hurricane).
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Figure 1.19.: Wind [3]

All three wind vectors can be switched on or off separately.

1.17. Translational wind

The translational wind in figure 1.20 is just a three-dimensional constant.
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Translational wind
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Figure 1.20.: Translational wind [3]
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A north blowing south wind of 5 m
s

would therefore just be
[
5 0 0

]
; or we could model

a thermal lift of 10 m
s

by
[
0 0 −10

]
.

1.18. Turbulence

The simple turbulence model in figure 1.21 uses three Band-Limited White Noise blocks
to generate random numbers for all three components of the turbulence vector and three
first order low pass filters to shape the spectrum of the turbulence to be more realistic.
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Figure 1.21.: Turbulence [3]

1.19. Rotational wind

We can use the three-dimensional constant vector in figure 1.22 e. g. to model a clock-
wise rotating cyclone by

[
0 0 50

]
or a single wake vortex in an easterly direction by[

0 15 0
]
.

1

_Om_W_g

[0  0  1]

Hurricane
(Tornado, ...)

Figure 1.22.: Rotational wind [3]

1.20. Track

The subsystem in figure 1.23 is used to compute the spherical components of the flight
path vector:

� absolute value of the flight path velocity vector (ground speed) VK

� angle of climb γ

� flight path azimuth χ
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from its Cartesian coordinates according to:

VK =
√
u2Kg + v2Kg + w2

Kg

γ = − arcsin

(
wKg
VK

)
χ = arctan

(
vKg
uKg

)
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Figure 1.23.: Track [3]

1.21. Attitude and altitude controller

The attitude and altitude controller in figure 1.24 is the inner loop controller of the
UAV’s cascade control system.
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Figure 1.24.: Attitude and altitude controller

It contains the following controllers:
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� yaw controller to control the azimuth Ψ , with feedback of the yawing velocity r in
the yaw damper;

� roll controller to control the bank angle Φ, with feedback of the rolling velocity p
in the roll damper;

� pitch controller to control the pitch angle Θ, with feedback of the pitching velocity
q in the pitch damper;

� altitude controller to control the altitude −zg, with feedback of the sink rate wKg
in the speed damper.

The attitude controllers are pure proportional controllers; for inner controllers we can
live with a reasonable steady-state control error. The yaw controller even holds its
azimuth setpoint with a zero rudder deflection because of the integral behavior of the
plant. All attitude controllers implement a feedback of the corresponding rotational
velocities for additional damping purposes.

For the altitude controller we use a PI controller with a limited integrator to prevent
wind-up for large control errors. Additionally, we feed back the sink rate to dampen
overshooting of the altitude. Since the sink rate of the UAV is not zero in the steady-state
case, the speed damper could be implemented as a high pass filter; in our implementation
the integrator in the PI controller compensates the steady-state error introduced by the
speed damper.

The altitude controller uses the elevator deflection angles η1,2,3 of all three vanes concur-
rently to control the drag and therefore the vertical speed and altitude of the UAV (right
part of figure 1.24) in order to keep the UAV at the skydiver’s altitude. We assume here
that the altitude controller does not know the current vertical speed of the skydiver.

The yaw controller uses the concurrent rudder deflection angles ζ of all vanes to control
the azimuth of the UAV (e. g. in order to point the camera towards the skydiver).

The pitch, roll, and collective mixer distribute the effective pitch, roll and collective
elevator commands ηx, ηy, and ηD to the vanes η1, η2, and η3. We can use the relations
between both groups of elevator commands according to equations (1.1 - 1.3) to define

syms et_x et_y et_C et_1 et_2 et_3

g1 = et_x == et_1 - cos (pi /3)*( et_2 + et_3)

g2 = et_y == sin (pi/3)*( et_2 - et_3)

g3 = et_C == et_1 + et_2 + et_3

and solve the equation system for η1, η2, and η3 with the help of the symbolic5 toolbox:

[et_1 , et_2 , et_3] = solve (g1, g2, g3 , et_1 , et_2 , et_3)

5In the end, we are talking about a simple linear equation system that we could easily solve numerically
(or even by hand); conveniently, the symbolic toolbox automatically returns the coefficients in a nice
symbolic form.
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et_1 = simplify (et_1)

et_2 = simplify (et_2)

et_3 = simplify (et_3)

The result

et_1 =

et_C/3 + (2* et_x )/3

et_2 =

et_C/3 - et_x/3 + (3^(1/2)* et_y )/3

et_3 =

et_C/3 - et_x/3 - (3^(1/2)* et_y )/3

looks reasonable: the collective command ηC is distributed equally to all three vanes.
The pitch command ηx goes to the first (front) vane with a factor of 2

3
and to both other

(side-back) vanes with a factor of 1
3

and an opposite sign. The roll command ηy does
not affect the front vane but only the right vane with a positive sign and the left vane
with the same magnitude6 but opposite sign.

1.22. Position controller

The position controller in figure 1.25 is the outer loop controller of the UAV’s cascade
control system.

6The overall magnitude of the coefficients is not really important since it can always be compensated
by the controller gains; it’s their relations that count.
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Figure 1.25.: Position controller

It contains the following controllers:

� x controller using the pitch angle command Θc as an input to the underlying
attitude controller to control the x-position of the UAV, with feedback of the
forward velocity ukf in the x damper;

� y controller using the bank angle command Φc as an input to the underlying
attitude controller to control the y-position of the UAV, with feedback of the
forward velocity vkf in the y damper;

� setpoint generator using the yaw angle command Ψc as an input to the underlying
attitude controller to control the azimuth of the UAV to look towards the skydiver.

Both position controllers are pure proportional controllers; the integral nature of the
underlying inner loop makes the outer position control loop steady-state error free.
Feedback of the corresponding velocities is used for additional damping purposes. Since
the position controllers command pitch and roll setpoints to the inner attitude controllers
we have to control the position in the body-fixed frame. Therefore, we have to transform
the actual position sg to the position in the body-fixed frame sf using the transformation
block Mfg in figure 1.25. It is very important to set the z-component of the position to
zero before the transformation. We only want to control the position in the horizontal
inertial plane; the altitude control is done in the inner control loop. The same is true
for the dampers: we extract the horizontal projection of the flight path velocity vector
onto the horizontal inertial plane by zeroing its z-component and then transform the
projection into the body-fixed frame.

We want the camera inside the UAV to “look” at the skydiver. Since the camera is
aligned with the xf -direction of the UAV, we have to align its xf -axis with the vector
from the UAV to the skydiver (∆SU in figure 1.26). Therefore, we have to command a
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yaw angle Ψc to the inner azimuth control loop that is computed as the arctangent of
the ratio of the second (ySU) and the first component (xSU) of the vector from the UAV
to the skydiver:

Ψc = arctan

(
ySU
xSU

)

xg

Skydiver

UAV

yg

DSU

ySU

xSU

yc

Figure 1.26.: Yaw angle command

Since the yaw angle command is computed as a four quadrant arctangent (atan2) its
absolute value cannot exceed π. Therefore, the angle would “jump” from a value just less
than π to a value just greater than −π and vice versa. This would result in unexpected
and unwanted rotations of the UAV if the unwrapped yaw angle exceeded ±π. To solve
this problem we use a tiny MATLAB function (angle continuous) in figure 1.25

function out = angle_continuous (in)

that defines two persistent variables (old is the previous input value, store is the ±2π
offset counter)

persistent old store

that we have to initialize in the first call of the function:

if isempty (old)

old = 0;

end

if isempty (store)
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store = 0;

end

We compute the difference between the current and the precious input value

delta = in - old;

and if there is a step with a size of more than 5 (in one simulation interval) we assume that
this does not have physical reasons but is a result of the periodicity of the arctangent.
If we detect a jump from −π to +π

if delta > 5

we decrement the persistent offset counter store by 2π:

store = store - 2*pi;

In case of a negative jump

elseif delta < -5

we increment the counter:

store = store + 2*pi;

end

Finally, we save the current input value in the persistent variable old to be used as the
previous value of the next call

old = in;

and return the current input value corrected by the accumulated multiples of 2π:

out = in + store;

1.23. Position command

The subsystem in figure 1.27 generates the position commands to be used in the Position
controller and in the Attitude and altitude controller
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Figure 1.27.: Position command

The general idea is to keep the UAV at the same altitude as the skydiver and position
it five meters in front of the skydivers head.7 For that purpose, we

� transform the position of the skydiver from the inertial frame to the skydivers
body-fixed frame,

� add five meters to the xf -component,

� transform the position back to the inertial frame,

� get rid of the zg-component because we want to control the position in the hori-
zontal xg-yg-plane only,

� transform to the body-fixed frame again because we need the setpoints xfc and yfc
in body-fixed coordinates.

Alternatively, there is a switch in the upper left of figure 1.27 that activates a demo
setpoint generator that sends the UAV on a circular path around the skydiver.

Usually, the UAV should stay at the skydiver’s altitude. Additionally, a very simple col-
lision detection and prevention algorithm in the bottom of figure 1.27 sends the UAV two
meters below the skydiver as soon as the distance between UAV and skydiver becomes
less than three meters.

1.24. 2-norm of a vector

The subsystem in figure 1.28 is just a helper function and computes the 2-norm of a
vector:

x = |x| =
√
x21 + x22 + · · ·+ x2n =

√
x · x

7If the skydiver himself yaws at a high rate, the UAV might not be able to follow his head on a
5 m-circle with a high circumferential speed. It might therefore be more appropriate for the UAV
to just keep any position at a predefined horizontal distance from the skydiver’s center of mass.
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1.25. Rotation about x-axis

The transformation matrix Mx of a frame rotating about an x-axis with an angle of wx
reads:

Mx =

1 0 0
0 coswx sinwx
0 − sinwx coswx


It can be generated via figure 1.29.
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Figure 1.29.: Rotation about x-axis [3]

The corresponding transformation matrices for the rotations about a y- and a z-axis are:

My =

coswy 0 − sinwy
0 1 0

sinwy 0 coswy


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Mz =

 coswz sinwz 0
− sinwz coswz 0

0 0 1



1.26. Transformation from inertial frame to body-fixed
frame

Using the single transformation matrices defined in section 1.25, the total transformation
matrix including all three transformations in the order wz → wy → wx is:

Mtot = Mx ·My ·Mz

=

1 0 0
0 coswx sinwx
0 − sinwx coswx

coswy 0 − sinwy
0 1 0

sinwy 0 coswy

 coswz sinwz 0
− sinwz coswz 0

0 0 1

 (1.7)

1
_vec_f

Angle M_z

Rotation
about z-axis

Angle M_y

Rotation
about y-axis

Angle M_x

Rotation
about x-axis

Matrix
Multiply

Matrix
Multiply

Matrix
Multiply

Demux

2
_vec_g

1
_Ph

M_x*M_y*M_z*_vec_g

M_y*M_z*_vec_g

M_x

M_y

M_z*_vec_g

th

ps

ph

M_z

Figure 1.30.: Transformation from inertial frame to body-fixed frame [3]

We can then use equation (1.7) and the Euler angles Ψ , Θ, and Φ in figure 1.30

Mfg =

1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ

cosΘ 0 − sinΘ
0 1 0

sinΘ 0 cosΘ

 cosΨ sinΨ 0
− sinΨ cosΨ 0

0 0 1


=

 cosΘ cosΨ cosΘ sinΨ − sinΘ
sinΦ sinΘ cosΨ − cosΦ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ sinΦ cosΘ
cosΦ sinΘ cosΨ + sinΦ sinΨ cosΦ sinΘ sinΨ − sinΦ cosΨ cosΦ cosΘ


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to transform any vector vg from the inertial frame to its representation in the body-fixed
frame vf according to figure 1.31:

vf = Mfg · vg

xg

x , yg g

x , zf g

y , zf f

k2

k1

k3

xf

yg

yf

zg

zf

Φ

Φ

Θ

Θ

Ψ
Ψ

Figure 1.31.: Rotation of the body-fixed frame with respect to the inertial frame [3]

1.27. Transformation from Euler frame to body-fixed
frame

The transformation from the Euler frame to the body-fixed frame depicted in figure 1.32

1
_Om_Ph

Matrix
Multiply

_ph M_Ph_f

M_Ph_f

2
_Om_f

1
_Ph

Figure 1.32.: Transformation from Euler frame to body-fixed frame [3]
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cannot be defined according to equation (1.7) because the axes about which the Euler
angles rotate do not stand rectangular on each other. Therefore, we have to transform
the single derivatives of the Euler angles into the body-fixed frame separately:

(
dΦ

dt

)
f

=

pKfqKf
rKf


=

Φ̇0
0


+

1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ

0

Θ̇
0


+

1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ

cosΘ 0 − sinΘ
0 1 0

sinΘ 0 cosΘ

0
0

Ψ̇


=

1 0 − sinΘ
0 cosΦ sinΦ cosΘ
0 − sinΦ cosΦ cosΘ

Φ̇Θ̇
Ψ̇


= MfΦ · Φ̇ (1.8)

To solve equation (1.8) for the vector of the Euler angle derivatives Φ̇ we have to invert
the non-orthogonal matrix MfΦ which finally results in equation (1.6).

1.28. Euler frame to body frame transformation matrix

In order to model the transformation matrix MΦf used in equation (1.6) and figure 1.32
we use the subsystem depicted in figure 1.33
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Figure 1.33.: Euler frame to body frame transformation matrix MΦf [3]

1.29. Displays

Figure 1.34 shows part of the upper right subsystem in figure 1.1. It is just a collection
of scopes to display all relevant flight mechanical vectors and scalars.
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1
_s_g_sky 

2
_Ph_sky 

Figure 1.34.: Displays

1.30. Diver

The skydiver subsystem in the bottom center and right of figure 1.1 is very similar to
the corresponding UAV subsystem. Basically, there is just one main difference: the free-
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falling diver does not have any control inputs. Therefore, we do not need any actuator
dynamics in figure 1.35

.
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Figure 1.35.: Diver overview

and no vane aerodynamics in figure 1.36.
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Figure 1.36.: Diver aerodynamics

1.31. Real-Time Pacer

We downloaded the real-time pacer block in the bottom left of figure 1.1 from [2]. It
forces a simulation to run in real (wall clock) time if the host computer is fast enough.
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1.32. sky diver dat.m

One of the nice features of Simulink is the true separation of model and data.8

The following Matlab code should be run before the start of the simulation. After an
initialization in which we clear all variables and the command window

clear all

clc

we define9 the aerodynamic parameters10 of the UAV

rh = 0.413;

l_mu_sky = 1;

S_sky = 0.01;

C_L_al_sky = 3;

C_L_et_sky = 0.1;

C_S_et_sky = C_L_et_sky;

C_D_0_sky = 0.5;

C_D_al_sky = 1;

C_D_al_2_sky = 1;

C_D_et_sky = 1;

C_m_al_sky = 0.5;

C_m_q_sky = -1;

C_m_et_sky = 1;

C_l_p_sky = C_m_q_sky;

C_l_et_sky = -1;

C_n_r_sky = -1;

C_n_ze_sky = 0.2;

turbulence = 1;

8We can e. g. build a generic aircraft model with named parameters and define all aircraft specific
parameters in the corresponding Matlab scripts. By running a specific .m data file before the
simulation it is then very easy to switch between different aircraft.

9At the time of this documentation, some aerodynamic parameters could only be roughly estimated;
future wind tunnel experiments and flight test based parameter identifications will come up with
more precise parameter values.

10Please refer to the nomenclature for the names and meanings of the parameters. The general idea is
to append a trailing sky to all UAV parameters and a trailing diver to all skydiver parameters.
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the vane limits11 of the UAV

et_min_sky = 0;

et_max_sky = 0.87;

et_d_max_sky = 3;

ze_min_sky = -0.87;

ze_max_sky = 0.87;

ze_d_max_sky = 3;

the kinetic parameters of the UAV

m_sky = 1;

g = 9.81;

I_x_sky = 0.1;

I_y_sky = 0.1;

I_z_sky = 0.1;

I_x_z_sky = 0;

I_f_sky = [ ...

I_x_sky 0 -I_x_z_sky; ...

...

0 I_y_sky 0; ...

...

-I_x_z_sky 0 I_z_sky ];

I_f_m1_sky = inv (I_f_sky );

the aerodynamic parameters of the skydiver

l_mu_diver = 1;

S_diver = 1;

C_L_al_diver = 3;

C_D_0_diver = 1;

C_D_al_diver = 1;

C_D_al_2_diver = 1;

C_m_al_diver = 0.5;

C_m_q_diver = -1;

C_l_p_diver = C_m_q_diver;

C_n_r_diver = -1;

11The rate limitations of the elevator vanes are quite overestimated to allow for a more efficient position
control; the elevators of the current UAV prototype are about five times slower than assumed.

38



and the kinetic parameters of the skydiver:

m_diver = 60;

I_x_diver = 3;

I_y_diver = 10;

I_z_diver = 10;

I_x_z_diver = 0;

I_f_diver = [ ...

I_x_diver 0 -I_x_z_diver; ...

...

0 I_y_diver 0; ...

...

-I_x_z_diver 0 I_z_diver ];

I_f_m1_diver = inv (I_f_diver );

At the end we inform the user that the script has successfully been completed:

disp (’sky_diver_dat.m done.’);
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2. Animation

2.1. Animation overview

The level-2 s-function (sd sfun.m) in the lower left of figure 1.1 draws the skydiver
and the UAV in a new figure before the simulation starts and is then called in every
simulation interval to redraw both objects with their current attitudes and positions.

The mask of the s-function is depicted in figure 2.1.

Figure 2.1.: Animation mask

The mask allows the user to choose a normal or a camera view, visible or invisible axes,
the viewing angle of the camera view, and whether or not a video of the animation is
recorded.

If the user selects the normal view with visible axes (figure 2.2) the axis limits are
automatically calculated to always include the UAV and the skydiver.
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Figure 2.2.: Animation with normal view and with axes

If the user deselects the axes (figure 2.3), it becomes invisible but its limits are still
automatically computed.

Figure 2.3.: Animation with normal view and without axes

In camera view mode (figure 2.4) with deselected axes we display the actual view as seen
from the camera on-board the UAV.
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Figure 2.4.: Animation with camera view but without axes

If we make the axes visible, the green square in figure 2.5 indicates the current view of
the camera.

Figure 2.5.: Animation with camera view and with axes

The default camera view angle (field of view) is assumed to be 50◦ (figure 2.1). If we
decrease the field of view to e. g. 20° (figure 2.6) the skydiver appears much bigger and
cannot be displayed in the green camera view square in its entirety.
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Figure 2.6.: Camera view angle decreased from 50◦ to 20◦

2.2. sd sfun.m

The level-2 s-function

function sd_sfun (block)

is responsible for the animation. Its functions are called by the Simulink run-time
system at the beginning, during, and at the end of the simulation. All communication
between the run-time system and the animation functions is done via a block object
(section 2.2.2.9). The main function just calls its setup function:

setup (block );

2.2.1. setup

In the initialization function

function setup (block)

we define a number of variables the run-time system needs to know. At first, we specify
the five input and zero output ports of the s-function

block.NumInputPorts = 5;

block.NumOutputPorts = 0;

indicate that they inherit their compiled properties from the model
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block.SetPreCompInpPortInfoToDynamic;

block.SetPreCompOutPortInfoToDynamic;

and override some properties of each input port

block.InputPort (1). Dimensions = 3;

block.InputPort (1). DatatypeID = 0; % double

block.InputPort (1). Complexity = ’Real ’;

block.InputPort (1). DirectFeedthrough = false;

block.InputPort (2). Dimensions = 3;

block.InputPort (2). DatatypeID = 0; % double

block.InputPort (2). Complexity = ’Real ’;

block.InputPort (2). DirectFeedthrough = false;

block.InputPort (3). Dimensions = 4;

block.InputPort (3). DatatypeID = 0; % double

block.InputPort (3). Complexity = ’Real ’;

block.InputPort (3). DirectFeedthrough = false;

block.InputPort (4). Dimensions = 3;

block.InputPort (4). DatatypeID = 0; % double

block.InputPort (4). Complexity = ’Real ’;

block.InputPort (4). DirectFeedthrough = false;

block.InputPort (5). Dimensions = 3;

block.InputPort (5). DatatypeID = 0; % double

block.InputPort (5). Complexity = ’Real ’;

block.InputPort (5). DirectFeedthrough = false;

We declare that the mask of the s-function has four dialog parameters

block.NumDialogPrms = 4;

tell the run-time system that we only want the animation to take place in major inte-
gration steps

block.SampleTimes = [0 1];

and that it does not have to save and restore any model simulation states:

block.SimStateCompliance = ’HasNoSimState ’;

Finally, we register the start, update, and terminate functions with the run-time
system:

block.RegBlockMethod (’Start ’, @Start );

block.RegBlockMethod (’Update ’, @Update );

block.RegBlockMethod (’Terminate ’, @Terminate );
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2.2.2. start

The initialization function

function Start (block)

is called by the run-time system once before the start of the simulation.

2.2.2.1. Figure and Axes

We clear the command window

clc

and check whether there is a figure window from a previous simulation:

existing_figure = ...

findobj (’Type ’,’Figure ’,’Name ’,’Sky animation ’);

If this is the case

if ~isempty (existing_figure)

we close the old window

close (existing_figure)

end

and open a new one

sd.h_figure = figure ( ...

’NumberTitle ’, ’off ’, ...

’Name ’, ’Sky animation ’, ...

’BackingStore ’,’off ’, ...

’MenuBar ’, ’figure ’, ...

’Position ’, [0 0 1024 768], ...

’Clipping ’, ’off ’, ...

’renderer ’, ’opengl ’);

In the figure we open an axes with perspective projection and inverted x- and z-axes

sd.h_axes = axes ( ...

’Projection ’, ’perspective ’, ...

’XDir ’, ’reverse ’, ...

’ZDir ’, ’reverse ’);

switch on the grid

grid on

45



set the viewing angle

view (66, 30)

use the same units along each axis and fit the axes box tightly around the objects

axis image

and give the user the opportunity to immediately use the mouse to rotate the axes:

rotate3d

2.2.2.2. Hull of the UAV

For the UAV we create a paraboloid of revolution by revolving a parabola around its
axis. We define the level of detail as a positive integer

m = 5;

from which we derive the number of revolution steps as a multiple of six1:

n = 6*m;

We define the maximum radius of the paraboloid

r_max = 2;

and a factor that scales the integer (radius) values towards realistic metric dimensions:

scaling_factor = 0.1;

In order to come up with a greater mesh density at the tip of the paraboloid we define
a linearly spaced radius vector

r = linspace (0, r_max , n);

and compute2 the corresponding z-values:

z = -r.^2 + r_max;

Finally, we use revolve.m3 to rotate the parabola about its axis

[hull_x , hull_y , hull_z] = ...

revolve (z*scaling_factor , r*scaling_factor , n);

and invert the x-direction so that the x-axis of the body-fixed frame points towards the
middle of one of the vanes (figure 1.11):

hull_x = -hull_x;

1Three vanes with at least two faces.
2The negative sign opens the paraboloid towards the negative z-axis, which points upwards in the flight

mechanical frame. The r max-offset moves the origin of the UAV into its “center” at z = rmax.
3We are not limited to a paraboloid here. We can use revolve.m to rotate arbitrary profiles about

the z-axis.
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2.2.2.3. Vanes

To model the vanes we divide the circumference of the paraboloid in three 120°-sections
(figure 1.11) and use the m upper (outer) vertices (n - m : n). The second vane starts
at the x-axis and then stretches one third of a full circle clockwise (1 : n/3 + 1):

vane_2_x = hull_x(n - m : n, 1 : n/3 + 1);

vane_2_y = hull_y(n - m : n, 1 : n/3 + 1);

vane_2_z = hull_z(n - m : n, 1 : n/3 + 1);

In order to move the vertices more easily during the simulation we transform the surface
into (a patch with) vertices and faces

[vane_2_f , vane_2_v] = surf2patch (vane_2_x , vane_2_y , vane_2_z );

and create4 the patch:

sd.vane_2.handle = patch ( ...

’Faces ’, vane_2_f , ...

’Vertices ’, vane_2_v , ...

’FaceVertexCData ’, [0.3 0.3 0.3], ...

’FaceColor ’, ’flat ’, ...

’FaceLighting ’, ’gouraud ’, ...

’AmbientStrength ’, 0.95, ...

’EdgeColor ’, ’none ’);

Since the coordinates of the vertices will change during the simulation we save the
original vertices

sd.vane_2.vertices = vane_2_v;

and the surface coordinates in the communication structure too:

sd.vane_2.x = vane_2_x;

sd.vane_2.y = vane_2_y;

sd.vane_2.z = vane_2_z;

The code for the first (and the third) vane is more or less identical; the section (n/3 +

1 : 2*n/3 + 1 and 2*n/3 + 1 : n + 1 respectively) on the circumference being the
only real difference:

vane_1_x = hull_x(n - m : n, n/3 + 1 : 2*n/3 + 1);

vane_1_y = hull_y(n - m : n, n/3 + 1 : 2*n/3 + 1);

vane_1_z = hull_z(n - m : n, n/3 + 1 : 2*n/3 + 1);

[vane_1_f , vane_1_v] = surf2patch (vane_1_x , vane_1_y , vane_1_z );

4We save the patch handle in the communication structure sd (which is saved in the BlockHandle

UserData in turn, section 2.2.2.9) in order to transfer information between the functions of the
s-function.
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sd.vane_1.handle = patch ( ...

’Faces ’, vane_1_f , ...

’Vertices ’, vane_1_v , ...

’FaceVertexCData ’, [0.3 0.3 0.3], ...

’FaceColor ’, ’flat ’, ...

’FaceLighting ’, ’gouraud ’, ...

’AmbientStrength ’, 0.95, ...

’EdgeColor ’, ’none ’);

sd.vane_1.vertices = vane_1_v;

sd.vane_1.x = vane_1_x;

sd.vane_1.y = vane_1_y;

sd.vane_1.z = vane_1_z;

vane_3_x = hull_x(n - m : n, 2*n/3 + 1 : n + 1);

vane_3_y = hull_y(n - m : n, 2*n/3 + 1 : n + 1);

vane_3_z = hull_z(n - m : n, 2*n/3 + 1 : n + 1);

[vane_3_f , vane_3_v] = surf2patch (vane_3_x , vane_3_y , vane_3_z );

sd.vane_3.handle = patch ( ...

’Faces ’, vane_3_f , ...

’Vertices ’, vane_3_v , ...

’FaceVertexCData ’, [0.3 0.3 0.3], ...

’FaceColor ’, ’flat ’, ...

’FaceLighting ’, ’gouraud ’, ...

’AmbientStrength ’, 0.95, ...

’EdgeColor ’, ’none ’);

sd.vane_3.vertices = vane_3_v;

sd.vane_3.x = vane_3_x;

sd.vane_3.y = vane_3_y;

sd.vane_3.z = vane_3_z;

2.2.2.4. Hull display

After we have created the vanes as separate objects we delete the corresponding faces
of the hull:

hull_x(n - m + 1 : n, :) = [];

hull_y(n - m + 1 : n, :) = [];

hull_z(n - m + 1 : n, :) = [];
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Finally, we transform the hull surface into a patch with faces and vertices

[hull_f , hull_v] = surf2patch (hull_x , hull_y , hull_z );

display the hull patch

sd.hull.handle = patch ( ...

’Faces ’, hull_f , ...

’Vertices ’, hull_v , ...

’FaceVertexCData ’, [0.8 0.8 0.8], ...

’FaceColor ’, ’flat ’, ...

’FaceLighting ’, ’gouraud ’, ...

’AmbientStrength ’, 0.95, ...

’EdgeColor ’, ’none ’);

and save the original hull vertices in the communication structure (section 2.2.2.9)

sd.hull.vertices = hull_v;

2.2.2.5. x-axis line

A one meter long red line (figure 2.2)

sd.x_axis_line.handle = ...

line ([0 1], [0 0], [0 0], ’LineWidth ’, 1, ’Color ’, ’red ’);

indicates the body-fixed x-axis (and by that the first vane) of the UAV.

As with the hull and the vanes, we save the original coordinates of the x-axis in the
communication structure for position manipulation during the simulation:

sd.x_axis_line.xdata = get (sd.x_axis_line.handle , ’XData ’);

sd.x_axis_line.ydata = get (sd.x_axis_line.handle , ’YData ’);

sd.x_axis_line.zdata = get (sd.x_axis_line.handle , ’ZData ’);

2.2.2.6. Field of view

In camera view mode (figure 2.5) we display a green square to indicate the camera field
of view. The coordinates of this square are updated in every simulation step; right now
we just initialize the polygon as a single green line:

sd.fov.handle = ...

line ([0 0], [0 0], [0 0], ’LineWidth ’, 0.1, ’Color ’, ’green ’);
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2.2.2.7. Skydiver

In order to display the skydiver we load the 3D model that we previously created in
section 2.3

load diver.mat

save its original faces and vertices in the communication structure

sd.diver.faces = diver_faces;

sd.diver.vertices = diver_vertices;

and display the skydiver as a single patch with colored faces:

sd.diver.handle = patch ( ...

’Faces ’, sd.diver.faces , ...

’Vertices ’, sd.diver.vertices , ...

’FaceVertexCData ’, color_faces , ...

’FaceColor ’, ’flat ’, ...

’FaceLighting ’, ’gouraud ’, ...

’AmbientStrength ’, 0.95, ...

’EdgeColor ’, ’none ’);

The default light environment is a bit dark; therefore, we create two light objects, one
“above” and one “below” the scene:

light (’Position ’, [0 0 100000])

light (’Position ’, [0 0 -100000])

The default surface reflectance properties give the skydiver an unnatural glossy ap-
pearance. Especially his skin5 looks much more natural with the appropriate material
property:

material dull;

2.2.2.8. Video

If the user has checked the corresponding box in figure 2.1 indicating that he wants to
record a video during the simulation

if block.DialogPrm (3). Data

we create a video writer object that will write into the file sky diver.mp4 during the
simulation

sd.video = VideoWriter(’sky_diver.mp4 ’, ’MPEG -4’);

5Unfortunately, we cannot easily set different material properties for different faces or objects.

50



set the frame rate to 100 Hz6

sd.video.FrameRate = 100;

and open the connection from the writer to the file:

open (sd.video);

end

2.2.2.9. Communication structure

In the start function we have created graphical objects that we want to manipulate (e. g.
move) in the update function that is called by the run-time system in every simulation
interval.

Unfortunately, transferring information (graphics handles, vertices, . . . ) between two
functions of an s-function is a bit tricky. The most elegant way according to [4] is
to bundle all the information in a structure and save this structure in the UserData

property of the block object that is automatically handed over to every function as
a parameter by the run-time system. Therefore, we finally save7 the communication
structure sd in the mentioned property:

set_param (block.BlockHandle , ’UserData ’, sd);

2.2.3. revolve.m

The function

function [xx, yy, zz] = revolve (z, r, n)

creates a solid of revolution (xx, yy, zz) from a given polygon (radius vector r, height
vector z). The number of vertices on the circumference of the solid can be defined by
the third parameter n (figure 2.7).

6We have to set the simulation sample time (Simulation/Model Configuration Parameters/Solver/Fixed-
step size) to 0.01 manually. On some computers we will lose real-time during the simulation;
nevertheless, the video will be in real-time. We can choose any other video frame rate (together
with the corresponding sample time).

7In the other function (section 2.2.4, . . . ), we can later on retrieve the communication structure via:
sd = get param (block.BlockHandle, ’UserData’);
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Figure 2.7.: revolve creates a solid of revolution from a given polygon.

Initially, we make sure that the radius and height vectors are column vectors:

r = r(:);

z = z(:);

Next, we create an angle vector for the n vertices8 on the circumference as a row vector:

theta = linspace (0, 2*pi, n + 1);

Multiplying the radius column vector with the corresponding row vectors (cos and sin

of the angle vector) now automatically creates the xx and yy domain mesh matrices used
for the surf command:

xx = r*cos (theta);

yy = r*sin (theta);

Since all vertices on a specific circumference of the paraboloid have the same z-component
the corresponding zz height matrix simply consists of replicas of the height vector:

zz = z*ones (1, n + 1);

2.2.4. update

The update function

function Update (block)

8Start and end vertices are identical.

52



is called by the run-time system in every (major) simulation step. Its main task is to
move the vertices of the objects in the scene. Therefore, our first step is to read the
communication structure data (handles, coordinates, . . . ) back into the local variable
sd:

sd = get_param (block.BlockHandle , ’UserData ’);

2.2.4.1. Hull

Using the communication structure we can extract the original hull vertex matrix:

hull_v = sd.hull.vertices;

During the simulation an object is animated by rotating and translating every single of
its vertices in every simulation step. The general idea is to move (translate) the object
into the origin, then rotate the object about the origin using the current Euler angles
and then move the rotated object to the current position.

Since we know the vertices of the original hull, our first step is to rotate all vertex vectors
by the (inverse9) transformation matrix (DCM) computed in m fg from the current Euler
angle vector fed into the s-function via the second input port:

hull_v = (m_fg (block.InputPort (2). Data)’*hull_v ’)’;

Then we can do the translation by adding the current position (incoming via the first
s-function input port) to the vertex matrix:

hull_v = ...

hull_v + ...

repmat (block.InputPort (1).Data ’, size (hull_v , 1), 1);

Finally, we set all vertices to their new positions:

set ( ...

sd.hull.handle , ...

’Vertices ’, ...

hull_v );

2.2.4.2. Vanes

We animate all three vanes by calling the separate function vane rotate using the
original vane vertices and the current vane angles (ηi, ζ) from the third s-function input
port as parameters:

9Orthogonal transformation matrices have the nice property that their inverses can easily be computed
by their transposes: M−1

ortho = MT
ortho
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vane_rotate (block , sd.vane_1 , ...

block.InputPort (3). Data(1), ...

block.InputPort (3). Data (4))

vane_rotate (block , sd.vane_2 , ...

block.InputPort (3). Data(2), ...

block.InputPort (3). Data (4))

vane_rotate (block , sd.vane_3 , ...

block.InputPort (3). Data(3), ...

block.InputPort (3). Data (4))

2.2.4.3. x-axis line

The rotation and motion of the x-axis line is done just like the transformation of the
hull. We combine the (two) vertices in a matrix

x_axis_line_data = [ ...

sd.x_axis_line.xdata ’, ...

sd.x_axis_line.ydata ’, ...

sd.x_axis_line.zdata ’];

rotate the vectors via m fg and the second input port

x_axis_line_data = ...

(m_fg (block.InputPort (2). Data)’*x_axis_line_data ’)’;

and translate them to the current position:

x_axis_line_data = ...

x_axis_line_data + ...

repmat (block.InputPort (1).Data ’, ...

size(x_axis_line_data , 1), 1);

Finally, we use the rotated and translated data to update the line object:

set ( ...

sd.x_axis_line.handle , ...

’XData ’, x_axis_line_data (:,1), ...

’YData ’, x_axis_line_data (:,2), ...

’ZData ’, x_axis_line_data (: ,3));

2.2.4.4. Skydiver

The exact same approach (vertices collection, rotation, motion, and data updating) is
used for the update of the skydiver:
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diver_v = sd.diver.vertices;

diver_v = (m_fg (block.InputPort (5). Data)’*diver_v ’)’;

diver_v = ...

diver_v + ...

repmat (block.InputPort (4).Data ’, size (diver_v , 1), 1);

set ( ...

sd.diver.handle , ...

’Vertices ’, ...

diver_v );

2.2.4.5. Camera

Depending on the choice of the user in figure 2.1

if block.DialogPrm (2). Data

we make the axes visible

axis on

or invisible:

else

axis off

end

If the user has checked camera view in figure 2.1

if block.DialogPrm (1). Data

we position the camera in the current center of the UAV

cam_pos = block.InputPort (1).Data ’;

campos (cam_pos );

and define the direction10 the camera is looking at to be the “end point” of the x-axis
line:

cam_target = x_axis_line_data (2 ,:);

Since the camera is gyro stabilized in two axes (roll and pitch) we additionally assume
that the target vector lies in the xg-yg-plane:

10Since we used a perspective projection in section 2.2.2.1 only the direction of the target vector is
utilized; its length is irrelevant [5].
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cam_target (3) = cam_pos (3);

camtarget (cam_target)

The user can define the camera viewing angle in figure 2.1:

va = block.DialogPrm (4). Data;

camva (va);

2.2.4.6. Field of view (FOV)

In order to generate the green FOV11 square in figure 2.5 we define the unit12 vector d

from the camera position to the camera target:

d = cam_target - cam_pos;

Additionally, we compute the half-width of the FOV square in 1 m distance from the
camera position (i. e. at the camera target) according to section 2.2.5:

fov_hw = atan (va/2*pi /180);

We define the FOV vertical unit vector (down)

fov_vv = [0 0 1];

and compute the resulting horizontal unit vector (to the left):

fov_hv = cross (d, fov_vv)

Now, we can compute all four vertices of the FOV square using half-width and unit
vectors:

fov_v = [...

cam_target + fov_hw *( fov_vv + fov_hv ); ...

cam_target + fov_hw *( fov_vv - fov_hv ); ...

cam_target + fov_hw*(-fov_vv - fov_hv ); ...

cam_target + fov_hw*(-fov_vv + fov_hv ); ...

cam_target + fov_hw *( fov_vv + fov_hv )];

and display the square

set (sd.fov.handle , ...

’XData ’, fov_v(:,1), ...

’YData ’, fov_v(:,2), ...

’ZData ’, fov_v (:,3))

11See fov test.m for a better understanding on how the field of view is defined and manipulated in
Matlab.

12Since we defined the camera target at the end of the 1 m long x-axis line, d is a unit vector.
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2.2.4.7. Visibility

In camera mode, the UAV itself should not be visible

set ([ ...

sd.hull.handle , ...

sd.vane_1.handle , ...

sd.vane_2.handle , ...

sd.vane_3.handle , ...

sd.x_axis_line.handle , ...

], ...

’visible ’, ...

’off ’)

but the FOV square is visible:

set ([ ...

sd.fov.handle , ...

], ...

’visible ’, ...

’on ’)

If he user has deselected camera mode in figure 2.1

else

we let Matlab choose appropriate values for the position, the target, and the viewing
angle of the camera:

campos (’auto ’);

camtarget (’auto ’);

camva (’auto ’);

In normal view (non-camera mode) we make the UAV visible

set ([ ...

sd.hull.handle , ...

sd.vane_1.handle , ...

sd.vane_2.handle , ...

sd.vane_3.handle , ...

sd.x_axis_line.handle , ...

], ...

’visible ’, ...

’on ’)

and the FOV square invisible
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set ([ ...

sd.fov.handle , ...

], ...

’visible ’, ...

’off ’)

end

Before we can see the current frame we have to tell the run-time system to actually
display all objects in the scene

drawnow limitrate

Using the limitrate parameter can speed up the simulation significantly.

2.2.4.8. Video

If the user has chosen to record a video

if block.DialogPrm (3). Data

we save a screenshot13 of the current frame in the video file defined in section 2.2.2.8:

writeVideo (sd.video , ...

getframe (sd.h_figure , [252 118 556 556]));

end

2.2.5. fov test.m

We wrote this small external14 script fov test.m to shed some light on how Matlab’s
camera field of view (FOV) is computed and displayed. For that purpose, we created
a number of parallel squares on the boundaries of the FOV pyramid according to [5].
As long as the camera is kept in the correct position, the camera target vector lies on
the line linking the camera and the target, and we use perspective projection instead
of the default orthographic projection, all FOV squares seem to exist in the same place
(figure 2.8a). As soon as we move the camera is becomes obvious that this is not the
case (figure 2.8b).

13By defining an empirically determined rectangle as the second parameter of the getframe command
we take a video of only the actual FOV. This works precisely only if the viewing angle is set to 50°.

14fov test is not needed for the simulation and animation of the UAV and the skydiver.
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(a) All FOV squares match. (b) FOV squares are distinguishable.

Figure 2.8.: Only in perspective projection mode all FOV squares appear as one (2.8a)
if the camera position and the camera target vector fit.

In order to create figure 2.8 we define a sphere around the origin

sphere

make all axes equidistant

axis equal

and invisible

axis off

and switch on perspective projection mode:

set (gca , ’Projection ’, ’perspective ’)

We position the camera at x = −10

campos ([-10, 0, 0])

let it look at15 the sphere

camtarget ([0, 0, 0])

and set the camera viewing angle16 to a moderate 30°:

15In perspective projection mode the camera target vector could have an arbitrary x-component of
x > −10. We could e. g. have used camtarget ([-3, 0, 0]).

16Any other valid viewing angle would come up with an equivalent result.
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va = 30;

camva (va)

We want to draw all squares in the already open axes

hold on

and start a loop over ten squares:

for x = 1 : 10

va/2

z

x camera
position

Figure 2.9.: Size of the FOV squares depending on the viewing angle va and the distance
from the camera x.

According to figure 2.9, we can calculate the half-width z of a square in the distance of
x from the camera position via the arctangent of half of the viewing angle:

arctan
(va

2

)
=
z

x

z = x*atan(va/2*pi /180);

Using the distance of the current square from the origin

xx = -10 + x;

we can finally draw the current square

plot3 ( ...

[xx, xx, xx, xx, xx], ...

[-z, z, z, -z, -z], ...

[-z, -z, z, z, -z])

end
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2.2.6. terminate

The terminate function

function Terminate (block)

is called by the run-time system at the end of the simulation. We use it to clean up the
video recording. If the user has decided to record a video

if block.DialogPrm (3). Data

we extract the communication structure

sd = get_param (block.BlockHandle , ’UserData ’);

and finalize the video writer object we created in section 2.2.2.8:

close (sd.video);

end

2.2.7. vane rotate

We outsourced the extensive computation of the vane deflections from section 2.2.4.2
into:

function vane_rotate (block , vane , roll_angle , yaw_angle)

Once again, the basic idea is to translate (move) the vane into the origin with one of its
vertices, do the rotation about a specific axis in the origin, and translate (the rotation
axis of) the vane back to its old position. Since there is a roll and a yaw rotation we
have to do both deflections one after the other.

2.2.7.1. Roll

For the roll deflection (η) we define the lowest outer vane vertices as axis points

vane_roll_axis_point_1 = [ ...

vane.x(1,1), ...

vane.y(1,1), ...

vane.z(1 ,1)];

vane_roll_axis_point_2 = [ ...

vane.x(1,end), ...

vane.y(1,end), ...

vane.z(1,end )];

and the roll axis to go through these two vertices:
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vane_roll_axis = vane_roll_axis_point_2 - vane_roll_axis_point_1;

After buffering the vane vertices

vane_v = vane.vertices;

we can translate the vane with its first roll axis vertex into the origin:

vane_v = vane_v - repmat ( ...

vane_roll_axis_point_1 , size(vane_v , 1), 1);

We can now roll all vane vertices about the roll axis in the orig:

vane_v = (rotation_about_arbitrary_axis ( ...

vane_roll_axis , roll_angle )*vane_v ’)’;

Finally, we have to translate the first roll axis vertex from the origin back to its previous
position:

vane_v = vane_v + repmat ( ...

vane_roll_axis_point_1 , size(vane_v , 1), 1);

2.2.7.2. Yaw

The yawing axis is defined by the lowest and the highest middle vertex of the vane:

vane_yaw_axis_point_1 = [ ...

vane.x(1,(end + 1)/2), ...

vane.y(1,(end + 1)/2), ...

vane.z(1,(end + 1)/2)];

vane_yaw_axis_point_2 = [ ...

vane.x(end ,(end + 1)/2), ...

vane.y(end ,(end + 1)/2), ...

vane.z(end ,(end + 1)/2)];

Unfortunately, we have to roll the yaw axis before we can yaw. Therefore, we merge
both vertices into a matrix

vane_yaw_axis_points = [ ...

vane_yaw_axis_point_1; vane_yaw_axis_point_2 ];

move the yaw axis with the first roll axis point into the origin

vane_yaw_axis_points = vane_yaw_axis_points - repmat ( ...

vane_roll_axis_point_1 , 2, 1);

rotate the yaw axis about the roll axis in the origin
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vane_yaw_axis_points = ...

(rotation_about_arbitrary_axis ( ...

vane_roll_axis , roll_angle )* vane_yaw_axis_points ’)’;

and move the yaw axis back up again into its previous position

vane_yaw_axis_points = vane_yaw_axis_points + repmat ( ...

vane_roll_axis_point_1 , 2, 1);

Now, we can read the rolled yaw axis vertices from the matrix

vane_yaw_axis_point_1 = vane_yaw_axis_points (1 ,:);

vane_yaw_axis_point_2 = vane_yaw_axis_points (2 ,:);

and define the final yaw axis

vane_yaw_axis = vane_yaw_axis_point_2 - vane_yaw_axis_point_1;

The rest is just the usual procedure: Move the vane down with its first yaw axis vertex
into the origin:

vane_v = vane_v - repmat ( ...

vane_yaw_axis_point_1 , size(vane_v , 1), 1);

rotate (ζ) the vane around its yaw axis in the origin

vane_v = (rotation_about_arbitrary_axis ( ...

vane_yaw_axis , yaw_angle )*vane_v ’)’;

and translate the vane back up again with its first yaw axis vertex into its previous
position:

vane_v = vane_v + repmat ( ...

vane_yaw_axis_point_1 , size(vane_v , 1), 1);

Finally, we have to rotate

vane_v = (m_fg(block.InputPort (2). Data)’*vane_v ’)’;

and translate the vane together with the hull:

vane_v = vane_v + repmat ( ...

block.InputPort (1).Data ’, size(vane_v , 1), 1);

and update all vane vertices:

set ( ...

vane.handle , ...

’Vertices ’, ...

vane_v );
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2.2.8. m fg

The helper function

function mfg = m_fg (ph_th_ps)

computes the (direction cosine) transformation matrix from the inertial to the body-
fixed frame (figure 1.31) using trigonometric functions of the Euler angles (Φ, Θ, and
Ψ). Since the sine and the cosine of the Euler angles are used more than once we buffer
them in extra variables:

cos_ps = cos (ph_th_ps (3));

sin_ps = sin (ph_th_ps (3));

cos_th = cos (ph_th_ps (2));

sin_th = sin (ph_th_ps (2));

cos_ph = cos (ph_th_ps (1));

sin_ph = sin (ph_th_ps (1));

Now we can compute the single transformation matrices for the rotation about the z-axis

m_ps = [ ...

cos_ps , sin_ps , 0; ...

-sin_ps , cos_ps , 0; ...

0, 0, 1];

the y-axis

m_th = [ ...

cos_th , 0, -sin_th; ...

0, 1, 0; ...

sin_th , 0, cos_th ];

and the x-axis:

m_ph = [ ...

1, 0, 0; ...

0, cos_ph , sin_ph; ...

0, -sin_ph , cos_ph ];

Finally, we combine all three rotations by multiplying the single matrices:

mfg = m_ph * m_th * m_ps;

Alternatively, we could have multiplied the matrices symbolically

mfg = [ ...

cps*cth , cth*sps , -sth; ...

cps*sph*sth - cph*sps , cph*cps + sph*sps*sth , cth*sph; ...

sph*sps + cph*cps*sth , cph*sps*sth - cps*sph , cph*cth];

in order to save a little bit of computation time.
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2.2.9. rotation about arbitrary axis

For a transformation (rotation) about an arbitrary axis we wrote a helper function
according to [6]:

function m = rotation_about_arbitrary_axis (axis , angle)

In the first step we make sure the rotation axis vector is a unit vector:

n = axis/norm(axis);

We buffer the components of the (unit) axis vector

n1 = n(1);

n2 = n(2);

n3 = n(3);

the sine and cosine of the rotation angle

c = cos (angle );

s = sin (angle );

and the cosine unit complement in extra variables:

c1 = 1 - c;

Finally, we can compute the rotation matrix

m = [ ...

n1*n1*c1 + c, n1*n2*c1 - n3*s, n1*n3*c1 + n2*s; ...

n2*n1*c1 + n3*s, n2*n2*c1 + c, n2*n3*c1 - n1*s; ...

n3*n1*c1 - n2*s, n3*n2*c1 + n1*s, n3*n3*c1 + c];

2.3. Skydiver model

Fortunately, we found an extremely detailed (297, 984 vertices) 3D model (figure 2.10)
of a male skydiver at [7].
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Figure 2.10.: 3D model of a male skydiver from [7]

Eric Johnson has written a nice little function [8] to import binary STL files into Matlab
and Matlab itself offers its reducepatch command to decrease the number of vertices of
the model to an amount that can be displayed by a contemporary computer in real-time.
Additionally, we want to create the illusion of a decent skydiver by painting parts of his
body with appropriate colors (figure 2.11).

Figure 2.11.: Skydiver with “clothes on”

In order to create a reasonable Matlab model of a skydiver we use the following steps in
an external script called diver stl2mat.m:

After a soft reset

clear all

close all

clc

we define that our final model should only have about 5000 vertices:

detail_factor = 0.1;
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We read [8] the STL file into a Matlab structure

diver_struct = stlread (’diver_slow.stl ’);

and reduce the complexity of the model significantly:

[diver_faces , diver_vertices] = ...

reducepatch (diver_struct , detail_factor );

Since the flight mechanical inertial system will have its z-axis pointing “down” we have
to invert the diver’s z-axis

diver_vertices (:,3) = -diver_vertices (:,3);

and rotate (exchange with one negative sign) its x- and y-axes:

buffer = diver_vertices (:,1);

diver_vertices (:,1) = -diver_vertices (:,2);

diver_vertices (:,2) = buffer;

In order to come up with a reasonably sized human (≈ 1.80 m) we scale the model:

diver_vertices = diver_vertices /90;

We move the origin of the coordinate system into the mean of all vertices, which is not
exactly the skydiver’s center of mass but comes sufficiently close:

diver_vertices = ...

diver_vertices - ...

repmat (mean (diver_vertices), ...

size (diver_vertices , 1), 1);

We define colors for different parts of the body

color_skin = [192, 122, 88]/255;

color_shirt = [255, 0, 0]/255;

color_pants = [0, 0, 255]/255;

color_shoes = [0, 0, 0]/255;

determine the number of vertices and faces of the reduced model

n_vertices = size (diver_vertices , 1);

n_faces = size (diver_faces , 1);

and initialize the arrays that will later hold the colored vertices and faces17:

color_vertices = zeros (n_vertices , 3);

color_faces = zeros (n_faces , 3);

17We know that all faces of this model are triangles and therefore have exactly three vertices.
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In a loop over all vertices

for i_vertex = 1 : n_vertices

we define certain areas (e. g. the pants)

if ...

diver_vertices(i_vertex , 1) < -0.03 && ...

diver_vertices(i_vertex , 3) > -0.25

in which the vertices (and later the faces) have a certain color:

color_vertices(i_vertex , :) = color_pants;

This coloring based on the location of the vertices is then done for the vertices of the
other body parts too:

elseif ...

diver_vertices(i_vertex , 3) <= -0.25

color_vertices(i_vertex , :) = color_shoes;

elseif ...

diver_vertices(i_vertex , 1) >= -0.03 && ...

diver_vertices(i_vertex , 1) < 0.47 && ...

diver_vertices(i_vertex , 2) > -0.71 && ...

diver_vertices(i_vertex , 2) < 0.71

color_vertices(i_vertex , :) = color_shirt;

else

color_vertices(i_vertex , :) = color_skin;

end

end

In a loop over every face

for i_face = 1 : n_faces

we take the mean18 of the colors of all three vertices of a face to define the color of that
face:

18The random location of border vertices makes the “borderline” between two differently colored body
parts look pretty ragged. Computing the mean of all three vertex colors of a border face makes the
transition between body parts a little bit smoother. All three vertices of non-border faces have the
same color; the mean does not change that.
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color_faces(i_face , :) = ...

mean (color_vertices(diver_faces(i_face , :), :));

end

To verify that everything has worked out as expected, we can draw (figure 2.11) the
skydiver in a realistic environment:

patch (...

’Faces ’, diver_faces , ...

’Vertices ’, diver_vertices , ...

’FaceVertexCData ’, color_faces , ...

’FaceColor ’, ’flat ’, ...

’FaceLighting ’, ’gouraud ’, ...

’AmbientStrength ’, 0.95, ...

’EdgeColor ’, ’none ’);

light (’Position ’, [0 0 1000])

light (’Position ’, [0 0 -1000])

material dull;

axis equal

rotate3d

Finally, we save the vertices, faces, and face colors in a binary Matlab file

save diver.mat diver_vertices diver_faces color_faces

that is read by section 2.2.2.7 during the initialization of the animation.
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3. Skydiver flight data

Instead of simulating the skydiver we can also use flight data that have been recorded
during various skydives. The data are preprocessed and enter the simulation via the
From Workspace Block in figure 3.1.
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Figure 3.1.: Using real-world skydive data

3.1. sky diver dat.m

The preprocessing of the skydive data is done in same m-file (sky diver dat.m) that
defines the parameters of the UAV and the skydiver.

First, we load the raw data from one of the flight data MAT-files:

load Skydiver_1238_Tandem

We skip the first frames until the velocity and attitude of the skydiver have stabilized:

skydiver_motion = skydiver_motion (100 : end , :);

The first column is the time. It should start with 0.0:

70



t = skydiver_motion (:, 1) - skydiver_motion (1, 1);

The frame rate of the data acquisition system is 5 Hz, which leads to unrealistically
disjointed and jumpy motions of the skydiver in some parts of the simulation. Therefore,
we resample the data with a frame rate of 100 Hz and a spline interpolation (figure 3.2).
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Interpolated data
Original data

Figure 3.2.: Spline interpolation of the bank angle

We define the finer step size

dt = 0.01;

and compute the corresponding time vector:

sm(:, 1) = 0 : dt : t(end);

We move the starting position into the origin by subtracting the first values and use the
new time vector for the spline interpolations of the translational components:

sm(:, 2) = ...

spline (t, skydiver_motion (:, 3) - ...

skydiver_motion (1, 3), sm(:, 1));

sm(:, 3) = ...

spline (t, skydiver_motion (:, 2) - ...

skydiver_motion (1, 2), sm(:, 1));

sm(:, 4) = ...
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spline (t, -skydiver_motion (:, 4) + ...

skydiver_motion (1, 4), sm(:, 1));

The Euler angles have to be converted from degrees to radians; we use the unwrap com-
mand to take care of 2π-jumps (especially in the azimuth angle); the hampel command
effectively eliminates outliers, before we finally do the spline resampling:

sm(:, 5) = ...

spline (t, ...

hampel (unwrap ...

(pi /180* skydiver_motion (:, 5))), sm(:, 1));

sm(:, 6) = ...

spline (t, ...

hampel (unwrap ...

(pi /180* skydiver_motion (:, 6))), sm(:, 1));

sm(:, 7) = ...

spline (t, ...

hampel (unwrap ...

(pi /180*( skydiver_motion (:, 7) + 19.5))) , sm(:, 1));

72



4. trimmod

We used trimmod from [9] to find an unaccelerated equilibrium (trim point) where the
skydiver and the UAV both have the same initial velocity vector.

4.1. Documentation

From the documentation of trimmod:

4.1.1. Syntax

trimmod

h = trimmod

4.1.2. Description

trimmod finds the trim point (equilibrium) of a Simulink system. When invoked with-
out left-hand arguments, trimmod opens a new figure with a graphical user interface
(figure 4.1).
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Figure 4.1.: Trimmod graphical user interface

The user can load a Simulink system (.mdl or .slx), define certain trim point re-
quirements and ask trimmod to calculate the corresponding trim point variables that
are necessary to satisfy the requirements. This trim point is then automatically trans-
ferred to the Simulation; Model Configuration Parameters; Data Import/Export; Load from
workspace dialog box (Input and Initial state) of the corresponding Simulink system.

When invoked with a left-hand argument,

h = trimmod

opens the gui and additionally returns the handle of the figure.

4.1.3. Arguments

trimmod does not need any input arguments. The optional output argument is the
handle of the newly opened figure.
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4.1.4. Example

� Invoke the graphical user interface: trimmod

� Open the Simulink system named trimtest.mdl: File; Open Model; trimtest.mdl

� Load the trim point from the file trimtest.mat: File; Load Trim Point; trimtest.mat

� Check everything in one view: Action; Overview

� Trim the system: Action; Trim

� Simulate the system using Simulink

� Modify the trim point using the graphical user interface

� Save the new trim point: File; Save Trim point in trimtest.mat

� Trim again, simulate again, ...

4.1.5. Menu

Table 4.1 describes the effect of trimmod’s menu entries.
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Table 4.1.: Trimmod menu

Menu command Action

File; Open Model Open a Simulink system via file select dialog box.

File; Load Trim Point Load a trim point that has been previously saved,
via file select dialog box.

File; Save Trim Point in ... Save current trim point in a .mat-file whose name is
the name of the current Simulink system. It might
be useful to save a newly defined trim point before
calling the trim algorithm because trim
requirements and trim variables are modified by the
trim algorithm. (see Action; Untrim)

File; Save Trim Point as Save current trim point via file select dialog box.

File; Exit TrimMod Game over. Ask user if he wants to save current
trim point.

Action; Overview Display an overview over all inputs, states, state
derivatives, and outputs along with their pre- and
post-trim values and the information, whether they
are trim variable or trim requirements.

Action; Trim Trim current Simulink system using current trim
requirements and trim variables. It might be useful
to save a newly defined trim point before calling the
trim algorithm (see File; Save Trim Point in ...).

Action; Untrim Countermand the effects of the previous trim. If
trimming was not successful (because of bad
starting guesses, unrealizable trim requirements, or
linear dependencies), the trim algorithm aborts and
the values in the gui represent the current (possibly
totally wrong) state of the algorithm. This error
state might be very useful for the analysis of trim
problems, but a reload of the original trim point
(via Load Trim Point or Untrim) might be necessary
prior to the next trim cycle.

Options; Show Tooltips Tooltips are very useful for the inexperienced user,
but can become quite annoying after a while.
Therefore, they can be switched off via a check
button.

Help; Help on TrimMod This manual

Help; About TrimMod The usual “about”-information: version, copyright,
author, . . .
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4.1.6. Algorithm

A nonlinear time invariant system can be described via its differential equation system

d = f(x, u)

and its output equation system
y = g(x, u)

where u is the input vector, x is the state vector, d = ẋ is the time derivative of the state
vector, y is the output vector, and f and g are nonlinear vector functions, evaluated every
simulation time step. State vector x and input vector u are the independent variables on
the right-hand side of the equations. Both vectors can be combined into a generalized
input vector

xu =

[
x
u

]
Derivative vector d and output vector y are the left-hand side results of the function
evaluations. They can be combined into the generalized output vector

dy =

[
d
y

]
Both equation systems can then be combined into

dy = h(xu) (4.1)

where h =

[
f
g

]
is the generalized system vector function.

To start a simulation, all elements of the generalized input vector xu (the complete x and
u vectors) have to be known for the first evaluations of equation (4.1). Unfortunately,
the trim point is often defined as a mixture of u, x, d, and y: The initial speed (x) of
a car might be known, but not the corresponding engine power or the accelerator angle
(u) for no acceleration (d). The radius of the curve might be predefined, but not the
corresponding turning wheel angle, . . . Usually the user initially defines some elements
of the generalized output vector dy that have to be satisfied, and some elements of the
generalized input vector xu that are known a priori. The other (unknown) elements
of the generalized input vector xu have to be found by the trim algorithm. The un-
known elements of the generalized output vector dy can then easily be calculated via
equation (4.1) if xu is completely known.

Both generalized vectors can therefore be split up into a known (subscript k) and an
unknown (subscript n) part:

dy =

[
dyk
dyn

]
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xu =

[
xuk
xun

]
Accordingly, equation (4.1) too can be split up into two (vector) equations, one for the
predefined elements of dy and one for the unknowns:

dyk = hk(xu) = hk

([
xuk
xun

])
(4.2)

dyn = hn(xu) = hn

([
xuk
xun

])
The trim algorithms now has to solve the nonlinear equation system (4.2) with respect
to the unknown vector xun (called the trim variables vector), while the vector dyk is
called the trim requirements vector.

Trim requirements dyk Those (known) elements of the generalized output vector dy
that have to be satisfied

Trim variables xun Those (unknown) elements of the generalized input vector xu that
the trim algorithm is free to vary

For a unique solution of equation (4.2) the number of (unknown) trim variables (length
(xu n)) has to equal the number of equations, given by the number of trim requirements
(length (dy k)).

If this prerequisite is fulfilled, trimmod (the graphical user interface) calls jj trim (the
actual trim algorithm).

As shown in figure 4.2, the first step of jj trim is to put in the initial guess of the trim
variable vector xunold

on the right hand side of equation (4.2) and to check whether the
trim requirement vector dyktrim is already met by dykold . As this is usually not the case,
a modified multidimensional Newton-Raphson-algorithm is used to iteratively find new
trim variable vectors xunnew that - hopefully - finally approach the sought xuntrim

.

78



xu_n

delta_xu_n

xu_n_trimxu_n_newxu_n_old

Trim
Point

First
Iteration

Initial
Guess

dy_k_old

dy_k_new

dy_k_trim

delta_dy_k

dy_k

Tangent

h_k

Figure 4.2.: One-dimensional Newton-Raphson step

Newton-Raphson relies on the local derivatives which can graphically be represented as
a tangent hyperplane in the multidimensional case. The linearization routine jj lin

finds the gradients of this tangent hyperplane at xunold
and returns a sensitivity matrix

(Jacobean matrix) jaco, which represents the linear relation

∆dyk = jaco ·∆xun (4.3)

of the trim requirement error

∆dyk = dyktrim − dykold

with respect to the trim variable correction

∆xun = xunnew − xunold
(4.4)

A singular system decomposition (singular values and singular vectors) of the sensitivity
matrix jaco is done, in order to find trim variables that have no influence on any trim re-
quirement, trim requirements that cannot be influenced by any trim variable, and linear
dependencies of trim variables or trim requirements. One or more singular values of zero
indicate a wrong choice of trim requirements and/or trim variables. The corresponding
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singular vectors clearly show which trim requirements and trim variables are responsible
for the rank deficiency. This detailed information can then be used to chose those trim
requirements and trim variables that correctly describe the desired trim state.

If the sensitivity matrix jaco has full rank (is non-singular), the linear equation system
(4.3) can be solved:

∆xun = jaco\∆dyk

and equation (4.4) can be used to find the next solution vector:

xunnew = xunold
+ ∆xun

4.2. Trimmod overview for UAV and skydiver

Figure 4.3 shows the pre-trim1 and post-trim values for the trim variables

� sink velocity of the UAV

� sink velocity of the skydiver

� altitude controller integrator

and the trim requirements

� no sink accelerations of the UAV

� no sink accelerations of the skydiver

� no difference between the sink velocities of UAV and skydiver

Additionally, we define that

� the UAV’s initial azimuth should be π in order to have it “look” towards the
skydiver

� the UAV should have an initial distance of 5 m (in positive x-direction) from the
skydiver

1We choose very realistic initial values in order to ease the work for the trim algorithm and prevent it
from iterating into saturations.
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Figure 4.3.: Trimmod overview
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A. Aerodynamic frame of an axially
symmetric body falling down

xf

x , y , yf f a

x , z , za a f

ya

k1

za

xa

yf

zf

a

a

m
m

Figure A.1.: Transformation from the body-fixed frame (index f) to the aerodynamic
frame (index a)

� The body falls down in a general z-direction.

� The body is axially symmetric with respect to its zf -axis.

� The apparent airflow (and therefore the drag) point towards the negative za-axis.

� The xa-axis lies in the za-zf -plane by definition. As a consequence, the ya-axis lies
in the xf -yf -plane.

� The lift points towards the negative xa-axis.
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� There is no sideslip angle, no side force, no roll moment, and no yawing moment
in the aerodynamic frame. Lift, drag and pitching moment only depend on α (s.
below).

� The direction of rotation (transformation), as shown in figure A.1, is from the
body-fixed frame (index f) to the aerodynamic frame (index a), which is the
opposite direction as used in the norm.

� The first rotation is about the zf -axis in the xf -yf -plane with the (aerodynamic
yaw or azimuth) angle µ which can rotate for a full circle: −π < µ ≤ π.

� The second rotation is about the ya-axis in the xa-za-plane with the angle1 (of
attack) α which can only rotate for half a circle: 0 ≤ α ≤ π.

Therefore, the transformation matrix Maf from the f -system to the a-system is a trans-
formation about a z-axis with the angle µ, followed (as read from the right to the left)
by a transformation about a y-axis with the angle α:

Maf = My(α) ·Mz(µ)

=

cosα 0 − sinα
0 1 0

sinα 0 cosα

 ·
 cosµ sinµ 0
− sinµ cosµ 0

0 0 1


=

cosα · cosµ cosα · sinµ − sinα
− sinµ cosµ 0

sinα · cosµ sinα · sinµ cosα


The opposite transformation matrixMfa(from the a-frame to the f -frame) is the inverse
(and fortunately also the transpose, because we are dealing with orthogonal matrices)
of Maf :

Mfa = M−1
af = MT

af

=

cosα · cosµ − sinµ sinα · cosµ
cosα · sinµ cosµ sinα · sinµ
− sinα 0 cosα

 (A.1)

We now want to express the spherical components of the aerodynamic velocity vector
(VA, α, µ) with respect to its Cartesian components (uAf , vAf , wAf ) in the body-fixed
frame.

The first spherical component VA is just the norm of the velocity vector:

VA =
√
u2Af + v2Af + w2

Af (A.2)

1We could have defined α in the opposite direction to make it point more towards the xf -axis instead
of pointing towards the xa-axis, which would be closer to the norm. On the other hand, phrases like
“from above” or “from below” lose their significance with an axially symmetric body, our definition
follows the right hand rule, and in the end it’s just a question of definition and consequently applying
this definition.
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The aerodynamic velocity vector expressed in Cartesian coordinates in the body-fixed
frame

VAf =

uAvA
wA


f

=

uAfvAf
wAf

 (A.3)

equals the aerodynamic velocity vector expressed in the aerodynamic frame VAa trans-
formed from the aerodynamic frame to the body-fixed frame:

VAf = Mfa · VAa (A.4)

Respecting the fact, that the velocity vector only has a z-component in the aerodynamic
frame

VAa =

 0
0
VA

 (A.5)

we can use equation (A.1), equation (A.3), and equation (A.5) in equation (A.4):uAfvAf
wAf

 =

cosα · cosµ − sinµ sinα · cosµ
cosα · sinµ cosµ sinα · sinµ
− sinα 0 cosα

 ·
 0

0
VA


=

VA · sinα · cosµ
VA · sinα · sinµ

VA · cosα

 (A.6)

The third vector component of equation (A.6)

wAf = VA · cosα

returns the equation for the angle of attack:

α = arccos

(
wAf
VA

)
(A.7)

Dividing the second by the first vector component of equation (A.6)

vAf
uAf

=
VA · sinα · sinµ
VA · sinα · cosµ

= tanµ

returns the equation for the aerodynamic yaw angle:

µ = arctan

(
vAf
uAf

)
(A.8)
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A quick consistency check of equation (A.7) shows that α is indeed zero if the airflow
only has a z-component in the body-fixed frame (wAf = VA) and that the yaw angle µ
is not defined2 in that case (0

0
) according to equation (A.8).

A zero yaw angle corresponds to a vAf of zero according to equation (A.8), while vAf =
uAf mathematically and physically results in a yaw angle of π

4
. If uAf is zero the argument

of the arc tangent becomes infinity and the yaw angle is correctly computed as ±π
2

(sign
depending on the sign of vAf ). As usual, we have to use the atan2-function with two
arguments to come up with yaw angles of a magnitude greater than π

2
.

2Matlab defines atan2 (0, 0) = 0, which is a bit unconventional but quite helpful in our case.
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