Skydiver following camera UAV

Model and animation

Jorg J. Buchholz*
Karl Stolf

25 March 2017

*Professor, Department of Mechanical Engineering, Hochschule Bremen, Germany;
buchholz@hs-bremen.de

fSenior Lecturer, Department of Mechanical Engineering, University of Auckland, New
Zealand; k.stol@auckland.ac.nz

http://prof.red
https://unidirectory.auckland.ac.nz/profile/k-stol

Contents

1. Simulink model
1.1. General overview
1.2, UAV 4+ wind + track
1.3. UAV overview o . o e
1.4. Actuator dynamics
1.5, Aerodynamics
1.6. Aerodynamic velocitieso Lo
1.7. Aerodynamic force unito Lo
1.8, Body e
1.9. Vanes e
1.10. Shadowing factor of the aerodynamic vanes
LI1. Kinetics o e e e e
1.12. Translational velocity differential equation
1.13. Position differential equation L.
1.14. Rotational velocity differential equation
1.15. Attitude differential equation
1.16. Wind o o
1.17. Translational wind Lo o
1.18. Turbulence
1.19. Rotational wind L oL
1.20. Track o e e
1.21. Attitude and altitude controller
1.22. Position controller Lo
1.23. Position commando
1.24. 2-norm of a vector
1.25. Rotation about x-axis.
1.26. Transformation from inertial frame to body-fixed frame
1.27. Transformation from Euler frame to body-fixed frame
1.28. Euler frame to body frame transformation matrix
1.29. Displays e
1.30. Diver L e
1.31. Real-Time Pacer
1.32.sky.diver dat.m

2. Animation
2.1. Animation overview,

11
12
13
14
14
15
16
18
19
20
21
21
21
22
22
23
23
23
24
26
29
30
31
32
33
34
35
35
36
37

40

2.2, sd_sfun.m 43

221, setup 43
222, start ... e 45
2.2.2.1. Figureand Axes 45

2.2.22. Hullof the UAV 46

2223, Vanes e 47

2224, Hulldisplayo 48

2.2.2.5. z-axisline 49

2.2.2.6. Fieldofview 49

22277, Skydiver 50

2228 Video 50

2.2.2.9. Communication structure 51

2.2.3. revolve.m e e 51
224, update 52
2.2.4.1. Hull 53

2242, Vanes e 53

2243, z-axisline 54

2.2.4.4. Skydiver o4

2.2.4.5. Camera e 55

2.24.6. Field of view (FOV) 56

2.2.4.7. Visibility oo 57

2248, Video 58

2.2.5. fov_test.m 58
2.2.6. terminate 61
2.2.7. vane_rotate 61
22.71. Roll 61

2272, Yaw 62

228 mEg ..o 64
2.2.9. rotation_about_arbitrary.axis 65

2.3. Skydiver model 65
. Skydiver flight data 70
3.1. skydiverdat.m 70
. trimmod 73
4.1. Documentation e 73
4110 Syntaxo 73
4.1.2. Description e 73
4.1.3. Arguments 74
4.1.4. Example 75
4.1.5. Menu. e 75
4.1.6. Algorithm 7

4.2. Trimmod overview for UAV and skydiver 80

A. Aerodynamic frame of an axially symmetric body falling down

83

Nomenclature

o Angle of attack (al)

X Flight path azimuth (ch)

n Elevator angle (et)

v Angle of climb (ga)

1 Aerodynamic yaw angle (mu)

P Air density (rh)

o Bank angle (ph)

v Azimuth angle (ps)

e Pitch angle (th)

Q Rotational velocity vector (_Om)

P Euler angle vector (_Ph)

Co Moment coefficient vector (-C_Q)

Cr Force coefficient vector (_C_R)

g Gravitational acceleration vector (_g)

I Tensor of the moment of inertia (_I)

Mg Transformation matrix from the body-fixed frame to the Euler angle frame
(m_phf)

M, ¢ Transformation matrix from the body-fixed frame to the aerodynamic frame
(m_af)

Mg, Transformation matrix from the aerodynamic frame to the body-fixed frame
(m_fa)

My, Transformation matrix from the inertial frame to the body-fixed frame (m_fg)

My Transformation matrix from the body-fixed frame to the inertial frame (m_gf)
Q Moment vector (_Q)

R Force vector (R)

s Position vector (_s)

14 Translational velocity vector (_V)

¢ Rudder angle (ze)

Cp Drag coefficient (C_D)

Cr Lift coefficient (C_L)

Cm Pitching moment coefficient (C_m)

Chpo Drag coefficient for angle of attack = 0 (C_DO)

Cpas Drag coefficient with respect to square of angle of attack (C_D_al2)
Cpa Drag coefficient with respect to angle of attack (C_D_al)

Chy, Drag coefficient with respect to elevator (C_D_et)

CLa Lift coefficient with respect to angle of attack (C_L_al)

Cry Lift coeflicient with respect to elevator (C_L_et)

Chy Rolling moment coefficient with respect to elevator (C_1_et)
Cip Rolling moment coefficient with respect to roll rate (C_1_p)
Crio Pitching moment coefficient with respect to angle of attack (C_m_al)
Chnny Pitching moment coefficient with respect to elevator (C_m_et)
Cing Pitching moment coefficient with respect to pitch rate (Cm_q)
Chn Yawing moment coefficient with respect to elevator (C_n_et)
Chyr Yawing moment coefficient with respect to yaw rate (C_n_r)
Csy Side force coefficient with respect to elevator (C_S_et)

E Aerodynamic force unit (E)

F Force (F)

Y

z

Index A
Index a
Index ¢
Index f
Index g

Index K

Shadowing factor (k)

Reference length (1_mu)

Mass (m)

Rolling velocity (p)

Pitching velocity (q)

Yawing velocity (r)

Reference area (S)

Forward speed (u)

Side speed (v)

Sink speed (w)

x-direction (to front/north ...) (x)
y-direction (to right/east ...) (y)
z-direction (down) (z)
Aerodynamic (-A)

Aerodynamic frame (_a)
Command, control, setpoint (_c)
Body-fixed frame (_f)

Inertial frame (_g)

Flight path (X)

Index W Wind (W)

1. Simulink model

The purpose of the UAV is provided in [1].

1.1. General overview

The main Simulink window

|—>

including all subsystems is shown in figure 1.1.

—Om_K_f_sky —Om_K_f_sky
- zgc
Phdver oo]
_Ph_sky et 1c Plet 1.c _Ph_sky _Ph_sky
Tsgsky e xfc on oo I |
_sgdver yfec yfec N N _s_g_sky _s_g_sky
Position command s g diver I | | _s_g_sky
th_ th ¢ _V_K_f_sky _V_K_f_sky
_s_g_sky
1 et 2 et2.c
_Ph_sky V_A_sky V_A_sky
ps_ ps_c
_V_K_g_sky
— al_sky al_sky
Position controller
_Om_K_f sky
mu_sky mu_sky
et 3 c——pet 3 ¢ | | |
_Ph_sky V_K_sky V_K_sky
| || [
ga_sky ga_sky
NN
| l l { ze ¢ ze ¢ ch_sky ch_sky
o vk |1 |
_V_K_g_sky _V_K g_sky
Attitude and Sky + Wind + Track Sky displays
Altitude controller
1 | T N
_Om_K_f_diver _Om_K_f_diver
_s._g_sky l ' '
_Ph_diver _Ph_diver
_Ph_sky l |
_s_g_diver _s_g_diver
| s.q aver
_V_K_f_diver ' P _V_K_f_diver
a
_s_g_diver V_A_diver V_A_diver
_Ph_diver '
al_diver ' al_diver
mu_diver mu_diver
V_K_diver l V_K_diver
_Ph_diver
ga_diver ga_diver
Real-Time Pacer))
Speedup = 1 ch_diver ch_diver
V_K g diver, pl VK g diver
Diver + Wind + Track Diver displays

Figure 1.1.: General overview

The top central subsystem Sky' + Wind + Track (section 1.2) holds the model of the
UAV, its own wind process and a block computing the spherical components of the
UAV’s flight path vector. The bottom central subsystem Diver + Wind + Track contains
the corresponding models of the skydiver.

Scopes for the main signals can be found in Sky displays and Diver displays (section 1.29).
An S-Function in the lower left of figure 1.1 is used to display an animation of the UAV
and the diver [2] during the simulation. The “yellow” Real-Time Pacer block makes sure
that the simulation runs in real-time if the hardware is fast enough.

While the skydiver is uncontrolled and reacts only to its own wind inputs, the UAV
is controlled by a cascade control system. The inner (secondary, slave) Attitude and
altitude controller measures the attitude and the altitude of the UAV and uses the
actuators to maintain their values. The outer (primary, master) Position controller
measures the position of the UAV and uses the inner loop as its actuators by commanding
an attitude setpoint to the inner controller. The position setpoint for the outer controller
and for the altitude is generated in the Position command block.

Additionally, figure 1.1 contains a dummy input, a sum and an output block that are
only used during the trim process.

1.2. UAV + wind + track

The top level UAV block (figure 1.2) contains its mathematical model (section 1.3)
including actuator dynamics, aerodynamics, and kinetics, its wind process (section 1.16),
and the computation of the spherical components of its flight path vector (section 1.20).

!The name Sky is used as a synonym for the UAV including the camera throughout this paper.

_Om_K_f
——» Ph
_vec_f »(-* »|_Om_Af _Om_K_f »(1)
_Om_W_g _vec_g —omw_f S om_K_f_sky
M_f g
_Ph »(2)
L—»l Fn _Ph_sky VK
oot | VAT
_V.Wg _vec g _V_w_f i V_K_sky
M_f g _V_K_f| _V.Kg » VKg ga
ga_sky
Wind
iy 4
otic sg ch_sky
_s_g_sky Track
_V.Kf »(4 »(11
et2c _V_K_f_sky _V_K_g_sky
et 2 c
V_A_sky
et 3
al_sky
Ca)—Hfz=c mui——>(7)
zec mu_sky
Sky

Figure 1.2.: UAV + wind + track

The translational flight path velocity vector Vi (i.e. the velocity of the UAV with
respect to the ground) is the sum of the aerodynamic velocity or airspeed vector Vu
(i.e. the velocity of the UAV with respect to the air) and the Vi (i.e. the velocity of

the air with respect to the ground):

Vi =Vai+ Vi

The same is true for the rotational velocity vectors:

Qg =04+ Qw

10

Figure 1.3.: Relation between Vi, Va, and Vi [3]

Since we need the airspeed vectors in the body-fixed frame, we have to transform the
wind from the inertial frame (index g) to the body-fixed frame (index f) with the help
of a transformation block (section 1.26):

VAf :VK_f — VWf
=Vky— Myg- Vg

The transformation matrix M, utilizes the Euler angle vector (attitude)

¢
b= |0
4

which therefore has to be fed back into the transformation blocks as well.

1.3. UAV overview

The UAV subsystem (figure 1.4) contains an Actuator dynamics block that saturates and
rate limits the actuators, an Aerodynamics block that computes the aerodynamic forces
R 45 and moments Q a¢, and a Kinetics block that integrates the forces and moments
into motion, i. e. the rotational flight path velocity vector in the body-fixed frame Qx,
the Euler angle vector (attitude) ®, the position vector in the inertial frame sg, and the
translational flight path velocity vector in the body-fixed frame Vi . Additionally, the
flight path velocity vector is returned in the inertial frame Vg,. The limited actuator
deflections are tunneled to the animation block in General overview via a Goto-block.

11

_om k_f—(1)
_Om_K_f
(A D)—»{ omas QAf Q_f
OmAf - 2
_Ph
VAT
VA AT - O
_RA o9
et 1c et >t 1)
et 1c vaA—»(6) o °
. Rf VK f
V_A
et2c et2 »et 2 &3
et2c e .
et3c et3 »et 3 al Kinetics
et 3 c ‘ ‘
@—P ze_c ze|—o i ze mu 4}.
ze_Cc L> mu
Actuator dynamics Aerodynamics

Goto

Figure 1.4.: UAV overview

1.4. Actuator dynamics

The UAV has three vanes (figure 1.5) that can be deflected individually (elevators 1y, 72,
and 73) about a horizontal axis to produce a pitching (or rolling) moment and collectively
(rudder ¢) about a vertical axis to produce a yawing moment.

et 1 ¢
et_1_max et_1_d_max

et2c et 2
- et_2_max et 2_d_max -
et 3_c et 3
- et_3_max et_3_d_max -
ze ¢ ze

- ze_max ze_d_max

Figure 1.5.: Actuator dynamics [3]

Each elevator deflection is positive, saturated

0 < n < Tmax
and rate limited:
_ﬁma:v S T/ S ﬁma.t

The rudder has symmetrical limits:

_Cmaz S C S Cmax

_éma:r < C < éma:p

12

1.5. Aerodynamics

The aerodynamic force vector in the body-fixed frame R4y is computed as the product
of the corresponding aerodynamic force coefficient vector Cras and the Aerodynamic
force unit F in figure 1.6:

RAf = E-CRAf

For the moments we have to multiply the force by a reference length (mean aerodynamic
cord) 1,

Qar =1, E-Cqay

V_A
V_A »{V_A E
Aerodynamic force unit
CGO)—>»|var
_V_Af
al x
_C_Rbody f N RAf
_C_R_vanes_f
mu
mu u _C_Q_body_f
CO)—>»| omas
_Om_A_f
_Om_Af* [C_I_p_sky, C_m_q_sky, C_n_r_sky]
_QAf

Damping

Aerodynamic
(rotational) velocities »al
» mi _C_R_vanes. f
G)—»lett
et 1
Ca)—»jet2
et 2
(5)—»fets cavanest
et3
C)—>

Vanes

Figure 1.6.: Aerodynamics

In the subsystem Aerodynamic velocities we compute the spherical components (Vy4, «,
and p) from the airspeed vector in the body-fixed frame V¢ and make the rotational
aerodynamic velocity vector €247 dimensionless. The aerodynamic coefficients are com-
puted as the sum of the coefficients of the Body, the Vanes and a linear damping:

CRAf - CRA.fbody + CRAfvanes
Cqar = Cafroay, T Coafuancs T CQAFsamyp

13

where the linear damping coefficient Cqay,,,., is the product of the diagonal damping
matrix and the dimensionless rotational aerodynamic velocity vector 2% Px

G, 0 0
CQA.fdamp = 0 qu 0 lef
0 0 Chur

1.6. Aerodynamic velocities

In the subsystem depicted in figure 1.7 we compute the spherical components (Vy4,a,
and p) of the flight path vector from its Cartesian representation Vaf according to
equation (A.7) and equation (A.8).

x

2-Norm

of a vector (]
>
uAf Vv_A f VA
atan2
1 mu acos 2
Q d Y UAf . D
_VAS al
LaBed
w_A f w_A f
>
G—x Om_A f
Oom A f Mean length

Figure 1.7.: Aerodynamic velocities [3]

Additionally, we normalize the rotational velocity vector by a “time unit” in order to
make it dimensionless:

. l
Afzv_/;.QAf

1.7. Aerodynamic force unit

The aerodynamic force unit (figure 1.8) represents a force that is proportional to the air
density p, the square of the air speed V4 and a reference area S:

14

- » .2 > > > > » -

1 u 1

- . » Dynamic pressure » -
V_A E

- Air density Reference Area

Figure 1.8.: Aerodynamic force unit [3]

It is used in section 1.5 to compute the aerodynamic forces and moments from the
dimensionless coefficients.

1.8. Body

In figure 1.9 we compute the aerodynamic force and moment coefficients of the UAV’s
body with respect to the angle of attack o and the aerodynamic yaw angle p. According
to appendix A the aerodynamic forces CRay,,, and moments Cqg,,,, of a symmetrical
body only depend on the angle of attack in the aerodynamic frame. The aerodynamic
yaw angle p is then used (together with «) to transform the forces and moments to the
body-fixed frame via equation (A.4).

(@ED; »| C_L al sky -
-Lift
al
Lift with respect to
angle of attack > al
[mu o _vecf
E mu ‘ _C_R_body f
ec_a
C_D_0_sky <M — | Side force _C_R body_a i
M_f_a_sky
Zero drag
» C_D_al_sky + —DI]—P
-Drag
Drag with respect to
angle of attack
C_D_al_2_sky +
Induced Drag with respect to
angle of attack squared = —»al
mu _vec_f
Roll moment C_Q_body_f
» C_m_al _sky _vec.a . a
_C_Q_body_a

Pitch moment with respect to E—> M_f_a_sky

angle of attack

‘Yaw moment

Figure 1.9.: Aerodynamics body

In this simple linear derivative aerodynamics, the lift coefficient Cp, , (pointing towards
the negative x-axis of the aerodynamic frame) is proportional to the angle of attack with
a constant lift slope derivative Cr,. Due to the axial symmetry of the body there is
no lift for a = 0. Also, the pitch moment coefficient C, only depends on the angle of
attack, with the pitch stability derivative C,,, as a proportionality factor:

Cm: ma * O

15

With the drag coefficient Cp, (pointing towards the negative z-axis of the aerodynamic
frame) we have to be a little bit more flexible; Not only do we have to consider a drag
coefficient C'p for a = 0 because of the face area, but we also have to take into account
that the induced drag is proportional to the square of the lift. Therefore, we assume a
full quadratic dependence of the drag coefficient Cp on the angle of attack:

Cp = Cpo+ Cpa -+ Cpag - 0

In the aerodynamic frame defined in appendix A there is no aerodynamic side force, roll
moment, or yaw moment.

1.9. Vanes

While the aerodynamics of the body is modeled in the aerodynamic frame and later
transformed into the body-fixed frame, we compute the aerodynamic forces and moments
(coefficients) of the vanes directly in the body-fixed frame (figure 1.10).

u
| e]
mu Lift with respect to
mu K « effective elevator
(= al
al et 1
- Shadowing factor - —CD
2/3'pi _C_R_vanes f
Side force with respect to
effective elevator
; Ol
. Y
x (st »| C_D_et sk u
a 9 PE: Doty =
Shadowing factor =2 Drag with respect to
2/3*pi collective elevator
Roling moment
Rudder is only effective

P ifthere is "some" elevator. Roling moment with respect to
Shadowing factor = effective elevator

_C_Q_vanes_f
Pitching moment with respect to
effective elevator

Yawing moment with respect to
rudder

Figure 1.10.: Aerodynamic vanes

The arrangement of the three vanes of the UAV are depicted in figure 1.11 looking down
in positive zy-direction.

16

Xf

F

vane 1

\4

w|a

F3 F,

vane 3/ vane 2

Figure 1.11.: Vanes and forces as seen from above

When deflected by its “elevator” deflection angle (1, 12, 173) each vane generates a force
(Fy, Fy, F3) in its deflection direction” and a moment about the perpendicular axis.
Additionally, all vanes generate drag forces in (negative) z;-direction.

In order to use the minimum number of derivatives we decompose the vane deflection
angles into their effective angles in 24 and ys-direction.”

The computation of the effective angles according to figure 1.11 is done in the upper
middle part of figure 1.10:

= m = cos (%) (e + 1) (1)
7y = sin (g) (n2 — n3) (1.2)

Additionally, we compute an effective collective angle for the drag:

ne = m +n2 +n3 (1.3)

Now we can compose the aerodynamic force coefficient vector in the body-fixed frame:

—ClLy T
Cry = | —Csy- 1y (1.4)

_CDn el

The moments generated by the vanes are computed accordingly: the effective z-vane
deflection generates a pitching moment about the y;-axis while an effective y-vane de-
flection results in a rolling moment about the x¢-axis. The yawing moment about the

2The force can be negative. Its sign is consequently taken into account when the coefficients are sorted
into the corresponding vector Cry in equation (1.4).

3Since the aerodynamic forces and moments linearly depend on the vane deflections in this simple
model we can superpose the angles instead of the forces.

17

zs-axis is caused by the concurrent deflection of all vanes about their own z-axis with
the “rudder” deflection angle (.

If the vane has an elevator deflection angle of 7 = 0 a rudder deflection ¢ does not have
any effect. With increasing elevator the rudder becomes more effective. In a quick-
and-dirty” implementation we implement this behavior by a product of both deflections
(bottom middle in figure 1.10). We can then compose the aerodynamic moment coeffi-
cient vector in the body-fixed frame:

Cly + 1y
Cor=| Con N
On(: C *ND

1.10. Shadowing factor of the aerodynamic vanes

If the aerodynamic yaw angle ;1 = +7 and the angle of attack a > 0 (i.e. the apparent
wind is coming from the “back”) the first (“front”) vane is shadowed by the body of
the UAV and therefore less effective. We model this effectiveness reduction by a vane
shadowing factor k (of the first vane) in the left part of figure 1.10 in the subsystem
depicted in figure 1.12.

al

Figure 1.12.: Aerodynamic vanes shadowing factor

The shadowing factor k depends on o and pu:

1 — cos(u)
2

k=1-— -sin(«) (1.5)
If o = 0 the apparent wind is flowing directly in (negative) z;-direction and no vane
effectiveness reduction should be present. Therefore, k = 1 according to equation (1.5).
The same is true for = 0, i. e. the apparent wind is directly hitting the first vane. The
trigonometric functions used in equation (1.5) ensure a steady effectiveness reduction
down to no effectiveness at a = 5 A p = +.

4One of the first optimizations of the aerodynamic model should start here to model the relationship
between yawing moment, elevator and rudder in a more realistic way.

18

The surface plot in figure 1.13 illustrates the relations between «, p, and k.

O
s

" <>
I

7555552
,'II;;,;;::,

Figure 1.13.: Shadowing factor surface plot

The considerations above are valid for the first vane. For the other vanes we add :t%ﬂ'
to the aerodynamic yaw angle in figure 1.12 before computing their shadowing factor.

1.11. Kinetics

The kinetics subsystem in figure 1.14 computes the following motion state vectors:
e translational velocity vector in the body-fixed frame Vi
e position vector in the inertial frame sg4
e rotational velocity vector in the body-fixed frame Qg
e attitude vector @

of the UAV from the forces Ry and moments Qs acting on the mass. It contains four
(three-dimensional) vector integrators and four subsystems in which we model the non-
linear 6-DOF vector differential equations (Translational velocity differential equation,
Position differential equation, Rotational velocity differential equation, and Attitude
differential equation).

19

Qs Om K1 " 1
- Ph 1 r »(2
o 1 ot
e 5 _om_K_f Ph
P _Om_K_f -Om.K.Lp S | OomKf Attitude integrator -
- Rotational velocity integrator f Ph _Ph
f_om _Om K_f
V_K. g
D
»_Om_K_f f _Ph
o e s9 Bﬁ
_VKfp i VK sop =
VKL ° VKT Position T
—R_f Velocity integrator fs integrator
R f _V_K f o s g

Figure 1.14.: Kinetics [3]

1.12. Translational velocity differential equation

The translational velocity vector differential equation expressed in the body-fixed frame

. R
VKf = Ef"i_Mfg'gg_QKf X VKf
modeled in figure 1.15 computes the translational acceleration vector Vi ¢ from the force

vector Ry.

_Ph
_Ph
vec_f +
vec| o
[00g] _vec_g
99
M_f_g
1/m_sky +
_Rf _V.Kfp
x
_Om_K_f
_xcross _y -
Euler-
y Term
_V_K f

Figure 1.15.: Velocity differential equation [3]

20

1.13. Position differential equation

The position vector differential equation expressed in the inertial frame
8g = Vkg = Mgy - Vs

modeled in figure 1.16 computes the derivative of the position vector in the inertial frame
84 from the velocity vector in the body-fixed frame Vi .

(A D)—»|pn
“Ph

_vec g VK

_V_K f

M_g_f

Figure 1.16.: Position differential equation [3]

1.14. Rotational velocity differential equation

The translational velocity vector differential equation expressed in the body-fixed frame
Qs =1I;"(Qf — Qxy x (Iy - Qi)

modeled in figure 1.17 computes the rotational acceleration vector Qi ¢ from the moment
vector Q.

I; is the tensor of the moment of inertia in the body-fixed frame.

X
_Om_K_f _xcross_y _ Inverse of the
moment of inertia tensor
= 1fmi

Moment of inertia tensor
| f

Figure 1.17.: Rotational velocity differential equation [3]

1.15. Attitude differential equation

The attitude vector differential equation

_ (P 1 sin®tan©® cosdtan©
b=160| =10 cos P —sin® QKf:qu.f'QKf (16)
Lp 0 Sin@/cos@ COS@/COS@

21

modeled in figure 1.18 computes the derivative of the attitude (Euler angle) vector by £
from the rotational velocity vector in the body-fixed frame Q.

The non-orthogonal transformation matrix Mgy (section 1.27) contains quotients that
can result in “divide-by-zero” if @ = £% or “undefined” gimbal lock situations if addi-
tionally @ = +£% or ¢ = 0.

_Ph
_Ph
_Om_Ph 4>.Om =
(Z)—{ons o e
_om K f

M_Ph_f

Figure 1.18.: Attitude differential equation [3]

1.16. Wind

The simple wind model in figure 1.19 generates Translational wind, Turbulence, and
Rotational wind (hurricane).

_V_W_g_Trans——po
% ’
Translatory wind Translatory wind
switch
_V_W_g
_V.W_g Tubf|——»
No—— b+
% ©
Turbulence Turbulence
switch _
Om W g——P—o
o .1
_| G et
Rotatory wind Rotatory wind

switch

Figure 1.19.: Wind [3]

All three wind vectors can be switched on or off separately.

1.17. Translational wind

The translational wind in figure 1.20 is just a three-dimensional constant.

Translational wind —V—W_g_Trans
in west direction
(east wind)

Figure 1.20.: Translational wind [3]

22

A north blowing south wind of 5 %' would therefore just be [5 0 O] ; or we could model
a thermal lift of 102 by [0 0 —10].

1.18. Turbulence

The simple turbulence model in figure 1.21 uses three Band-Limited White Noise blocks
to generate random numbers for all three components of the turbulence vector and three
first order low pass filters to shape the spectrum of the turbulence to be more realistic.

1 »
White 0.2s+1 Pink

uW._g noise noise

1
M L Mo (D
- White 0.25+1 Pink " C

VW g noise noise _V_W_g_Turb

|'|,, T 1
. White 0.25+1 Pink "

noise noise

Figure 1.21.: Turbulence [3]

1.19. Rotational wind

We can use the three-dimensional constant vector in figure 1.22 e.g. to model a clock-
wise rotating cyclone by [O 0 50] or a single wake vortex in an easterly direction by

[0 15 0].

Hurricane -Om_W_g

(Tornado, ...)

Figure 1.22.: Rotational wind [3]

1.20. Track

The subsystem in figure 1.23 is used to compute the spherical components of the flight
path vector:

e absolute value of the flight path velocity vector (ground speed) Vi
e angle of climb ~

e flight path azimuth y

23

from its Cartesian coordinates according to:

— a2 2 2
Vk = \/qu + vk, + Wi,

ng
K

v = — arcsin

VK
X = arctan (| —

ga

2-Norm
of a vector

Figure 1.23.: Track [3]

1.21. Attitude and altitude controller

The attitude and altitude controller in figure 1.24 is the inner loop controller of the
UAV’s cascade control system.

Altitude
controller P

Altitude Altitude

controller | controller
integrator

_V_K_g_sky 1
w_K_g_sky

Speed damper

Roll mixer

ph
: th
_Ph_sky
ps ’
] h Pitch controller Pitch mixer
P \ q
5 —» » -1
_Om_K_f _sky q ‘ Pitch d:
r itch damper Pitch mixer

Figure 1.24.: Attitude and altitude controller

It contains the following controllers:

24

e yaw controller to control the azimuth ¥, with feedback of the yawing velocity r in
the yaw damper;

e roll controller to control the bank angle @, with feedback of the rolling velocity p
in the roll damper;

e pitch controller to control the pitch angle @, with feedback of the pitching velocity
¢ in the pitch damper;

e altitude controller to control the altitude —z,, with feedback of the sink rate wg,
in the speed damper.

The attitude controllers are pure proportional controllers; for inner controllers we can
live with a reasonable steady-state control error. The yaw controller even holds its
azimuth setpoint with a zero rudder deflection because of the integral behavior of the
plant. All attitude controllers implement a feedback of the corresponding rotational
velocities for additional damping purposes.

For the altitude controller we use a PI controller with a limited integrator to prevent
wind-up for large control errors. Additionally, we feed back the sink rate to dampen
overshooting of the altitude. Since the sink rate of the UAV is not zero in the steady-state
case, the speed damper could be implemented as a high pass filter; in our implementation
the integrator in the PI controller compensates the steady-state error introduced by the
speed damper.

The altitude controller uses the elevator deflection angles 1, 5 3 of all three vanes concur-
rently to control the drag and therefore the vertical speed and altitude of the UAV (right
part of figure 1.24) in order to keep the UAV at the skydiver’s altitude. We assume here
that the altitude controller does not know the current vertical speed of the skydiver.

The yaw controller uses the concurrent rudder deflection angles (of all vanes to control
the azimuth of the UAV (e.g. in order to point the camera towards the skydiver).

The pitch, roll, and collective mixer distribute the effective pitch, roll and collective
elevator commands 7, 1,, and np to the vanes 1, 12, and n3. We can use the relations
between both groups of elevator commands according to equations (1.1 - 1.3) to define

syms et_x et_y et_C et_1 et_2 et_3

gl = et_x == et_1 - cos (pi/3)x(et_2 + et_3)
g2 = et_y == sin (pi/3)*(et_2 - et_3)
g3 = et_C == et_1 + et_2 + et_3

and solve the equation system for 7, 7y, and 73 with the help of the symbolic® toolbox:
[et_1, et_2, et_3] = solve (gl, g2, g3, et_1, et_2, et_3)

5In the end, we are talking about a simple linear equation system that we could easily solve numerically
(or even by hand); conveniently, the symbolic toolbox automatically returns the coefficients in a nice
symbolic form.

25

et_1 = simplify (et_1)
et_2 = simplify (et_2)
et_3 simplify (et_3)

The result

et_1 =

et_C/3 + (2xet_x)/3

et_2 =

et_C/3 - et_x/3 + (3°(1/2)*xet_y)/3

et_3 =
et_C/3 - et_x/3 - (37 (1/2)*et_y)/3

looks reasonable: the collective command 7¢ is distributed equally to all three vanes.
The pitch command 7, goes to the first (front) vane with a factor of 2 and to both other
(side-back) vanes with a factor of % and an opposite sign. The roll command 7, does
not affect the front vane but only the right vane with a positive sign and the left vane
with the same magnitude® but opposite sign.

1.22. Position controller

The position controller in figure 1.25 is the outer loop controller of the UAV’s cascade
control system.

6The overall magnitude of the coefficients is not really important since it can always be compensated
by the controller gains; it’s their relations that count.

26

»(+

8

<
[
|

o

1
xfc
x controller
D,
_Ph_sky N _Ph
_vec_f >
4 » P _vec g _s f sky
[x, y1_g_sky
=N e
x damper
Ph
_vec_f » m
e > P vec g L
Vg sky =N y damper

4 o > D)

angle_continuous ps_c

_s_g_diver

_s_g_sky

Figure 1.25.: Position controller

It contains the following controllers:

e 1 controller using the pitch angle command O, as an input to the underlying
attitude controller to control the z-position of the UAV, with feedback of the
forward velocity uxs in the x damper;

e y controller using the bank angle command &. as an input to the underlying
attitude controller to control the y-position of the UAV, with feedback of the
forward velocity vy in the y damper;

e setpoint generator using the yaw angle command ¥, as an input to the underlying
attitude controller to control the azimuth of the UAV to look towards the skydiver.

Both position controllers are pure proportional controllers; the integral nature of the
underlying inner loop makes the outer position control loop steady-state error free.
Feedback of the corresponding velocities is used for additional damping purposes. Since
the position controllers command pitch and roll setpoints to the inner attitude controllers
we have to control the position in the body-fixed frame. Therefore, we have to transform
the actual position sg4 to the position in the body-fixed frame s using the transformation
block My, in figure 1.25. It is very important to set the z-component of the position to
zero before the transformation. We only want to control the position in the horizontal
inertial plane; the altitude control is done in the inner control loop. The same is true
for the dampers: we extract the horizontal projection of the flight path velocity vector
onto the horizontal inertial plane by zeroing its z-component and then transform the
projection into the body-fixed frame.

We want the camera inside the UAV to “look” at the skydiver. Since the camera is
aligned with the xs-direction of the UAV, we have to align its x-axis with the vector
from the UAV to the skydiver (Agy in figure 1.26). Therefore, we have to command a

27

yaw angle ¥, to the inner azimuth control loop that is computed as the arctangent of
the ratio of the second (ysy) and the first component (zgy7) of the vector from the UAV

to the skydiver:
Y. = arctan <yS—U)
Tsu

Vsu Skydiver
Xsu
Asy
Ve
UAV
Yg

Figure 1.26.: Yaw angle command

Since the yaw angle command is computed as a four quadrant arctangent (atan?2) its
absolute value cannot exceed 7. Therefore, the angle would “jump” from a value just less
than 7 to a value just greater than —m and vice versa. This would result in unexpected
and unwanted rotations of the UAV if the unwrapped yaw angle exceeded +7. To solve
this problem we use a tiny MATLAB function (angle_continuous) in figure 1.25

function out = angle_continuous (in)

that defines two persistent variables (old is the previous input value, store is the +27
offset counter)

persistent old store

that we have to initialize in the first call of the function:

if isempty (old)
old = 0;
end

if isempty (store)

28

store = 0;
end

We compute the difference between the current and the precious input value

delta = in - old;

and if there is a step with a size of more than 5 (in one simulation interval) we assume that
this does not have physical reasons but is a result of the periodicity of the arctangent.
If we detect a jump from —7 to +7

if delta > 5

we decrement the persistent offset counter store by 2m:

store = store - 2%pi;

In case of a negative jump

elseif delta < -5

we increment the counter:

store = store + 2xpi;
end

Finally, we save the current input value in the persistent variable o1ld to be used as the
previous value of the next call

old = in;

and return the current input value corrected by the accumulated multiples of 27:

out = in + store;

1.23. Position command

The subsystem in figure 1.27 generates the position commands to be used in the Position
controller and in the Attitude and altitude controller

29

Relational
Operator

Figure 1.27.: Position command

The general idea is to keep the UAV at the same altitude as the skydiver and position
it five meters in front of the skydivers head.” For that purpose, we

e transform the position of the skydiver from the inertial frame to the skydivers
body-fixed frame,

e add five meters to the xy-component,
e transform the position back to the inertial frame,

e get rid of the z,-component because we want to control the position in the hori-
zontal x4-y,-plane only,

e transform to the body-fixed frame again because we need the setpoints x . and yy.
in body-fixed coordinates.

Alternatively, there is a switch in the upper left of figure 1.27 that activates a demo
setpoint generator that sends the UAV on a circular path around the skydiver.

Usually, the UAV should stay at the skydiver’s altitude. Additionally, a very simple col-
lision detection and prevention algorithm in the bottom of figure 1.27 sends the UAV two
meters below the skydiver as soon as the distance between UAV and skydiver becomes
less than three meters.

1.24. 2-norm of a vector

The subsystem in figure 1.28 is just a helper function and computes the 2-norm of a
vector:

If the skydiver himself yaws at a high rate, the UAV might not be able to follow his head on a
5 m-circle with a high circumferential speed. It might therefore be more appropriate for the UAV
to just keep any position at a predefined horizontal distance from the skydiver’s center of mass.

30

— | o
- | x|

Dot Product

Figure 1.28.: 2-norm of a vector

1.25. Rotation about x-axis

The transformation matrix M, of a frame rotating about an z-axis with an angle of w,
reads:

1 0 0
M, = |0 cosw, sinw,
0 —sinw, cosw,

It can be generated via figure 1.29.

Angle

1 0 0
0 cos sin
0 sin cos

First Second Third
column vector column vector column vector

Transformation
matrix

Figure 1.29.: Rotation about x-axis [3]

The corresponding transformation matrices for the rotations about a y- and a z-axis are:
coswy, 0 —sinw,

My,=| 0 1 0

sinw, 0 cosw,

31

cosw, sinw, 0
M, = |—sinw, cosw, 0
0 0 1

1.26. Transformation from inertial frame to body-fixed
frame

Using the single transformation matrices defined in section 1.25, the total transformation
matrix including all three transformations in the order w, — w, — w, is:

Mtot = Mw 'My 'Mz

1 0 0 cosw, 0 —sinw, cosw, sinw, 0
= |0 cosw, sinw, 0 1 0 —sinw, cosw, 0 (1.7)
0 —sinw, cosw,| |sinw, 0 cosw, 0 0 1
Angle M_x W

ph 1
Rotation
about x-axis

Matrix
Multiply

M_X*M_y*M_z*_vec_g

(AD)——»| Demux Angle M
- m gl Ly My L _vec_f

_Ph

Rotation
about y-axis

Matrix
Multiply >

Angle M_z
Mz

Rotation "
bout . Matrix
about z-axis Multiply - >

_vec_g

Figure 1.30.: Transformation from inertial frame to body-fixed frame [3]

We can then use equation (1.7) and the Euler angles ¥, ©, and @ in figure 1.30

1 0 0 cos@® 0 —sin@] [cos¥ sin¥ 0
Mg = |0 cos® sind 0 1 0 —sin¥ cos¥ 0
|0 —sin® cos®| |sin® 0 cosO 0 0 1
i cos © cos ¥ cos © sin ¥ —sin®
= |sin®sin®@cosV¥ —cosPsin¥ sindsinOsin¥ + cos@cos¥ sind cos O
| cos@sin O cos¥ +sin@sin¥ cos@sinOsin¥ —sinPcos¥ cos P cos O

32

to transform any vector vy from the inertial frame to its representation in the body-fixed
frame vy according to figure 1.31:

vy = Mpyg-vg

Zy

Figure 1.31.: Rotation of the body-fixed frame with respect to the inertial frame [3]

1.27. Transformation from Euler frame to body-fixed
frame

The transformation from the Euler frame to the body-fixed frame depicted in figure 1.32

_ph M_Phf

_Ph

Matrix
M_Ph_f Multiply >

Om_Ph

Figure 1.32.: Transformation from Euler frame to body-fixed frame [3]

33

cannot be defined according to equation (1.7) because the axes about which the Euler
angles rotate do not stand rectangular on each other. Therefore, we have to transform
the single derivatives of the Euler angles into the body-fixed frame separately:

Ao PKf
(),

| "Kf
[
=10
| 0
1 0 0 1To
+ 10 cos® sin®| |6
10 —sin® cos@_ 0
1 0 0] [cos® 0 —sin@] [0
+ 10 cos® sind 0 1 0 0
10 —sin® cos(ﬁ_ _sin@ 0 cos® 4
1 0 —sin ©® 45
=10 cos® sindcosO| |O
0 —sin® cosPcosO| |@
= Mg - ® (1.8)

To solve equation (1.8) for the vector of the Euler angle derivatives & we have to invert
the non-orthogonal matrix Mg which finally results in equation (1.6).

1.28. Euler frame to body frame transformation matrix

In order to model the transformation matrix Mg¢ used in equation (1.6) and figure 1.32

we use the subsystem depicted in figure 1.33

34

cos ph

CO—»] pemux

| sin
oh sinph T
cos ‘

th sinth
_ph
cos
cos th l i l
Yy Vv
T x l T x l l + X X l
sinph/ cos th sin phtan th cos ph/ cos th -sin ph cos ph tan th
sin ph tan th cos ph tan th

> ph -sin ph

> #sin ph/ cos th > ph/costh
First Second Third
column vector column vector column vector

Y

Transformation:
matrix|

v
CiDM_PhT

Figure 1.33.: Euler frame to body frame transformation matrix Mgy [3]

1.29. Displays

Figure 1.34 shows part of the upper right subsystem in figure 1.1. It is just a collection
of scopes to display all relevant flight mechanical vectors and scalars.

o

_Om_K_f_sky Om KT sky

Ground track sky

- _s_g_sky
e
_V_K_f_sky VK T sky

Figure 1.34.: Displays

1.30. Diver

The skydiver subsystem in the bottom center and right of figure 1.1 is very similar to
the corresponding UAV subsystem. Basically, there is just one main difference: the free-

35

falling diver does not have any control inputs. Therefore, we do not need any actuator
dynamics in figure 1.35

_Om_K_f
QAT af
_p—(2)
_Ph
_om_Af
RAf so—»(4)
Oom_A f AT] (4)
sg
a8 R VKf
V_A
VKg
, Vs
VAS al Kinetics
VAT
m
mu

Aerodynamics

Figure 1.35.: Diver overview

and no vane aerodynamics in figure 1.36.

V_A
VA VA E

»
Aerodynamic force unit
C2D)—» vas
VAS
al x
al P al _C_R_body_f >
_C_R_body_f RAf
mu
mu _C_Q_body_f
D)—>» omAsf
_OmA f

_Om_Af* [C_I_p_diver, C_m_gq_diver, C_n_r_diver]

Damping

Aerodynamic
(rotational) velocities

Figure 1.36.: Diver aerodynamics

1.31. Real-Time Pacer

We downloaded the real-time pacer block in the bottom left of figure 1.1 from [2]. It
forces a simulation to run in real (wall clock) time if the host computer is fast enough.

36

1.32. sky diver dat.m

One of the nice features of Simulink is the true separation of model and data.®

The following Matlab code should be run before the start of the simulation. After an
initialization in which we clear all variables and the command window

clear all
clc

we define’ the aerodynamic parameters'’ of the UAV

rh = 0.413;

1 _mu_sky = 1;
S_sky = 0.01;

C_L_al_sky = 3;

C_L_et_sky = 0.1;
C_S_et_sky = C_L_et_sky;
C_D_O_sky = 0.5;
C_D_al_sky = 1;
C_D_al_2_sky = 1;
C_D_et_sky = 1;
C_m_al_sky = 0.5;
C_m_q_sky = -1;
C_m_et_sky = 1;

C_1l_p_sky = C_m_q_sky;

C_l_et_sky = -1;
C_n_r_sky = -1;
C_n_ze_sky = 0.2;
turbulence = 1;

8We can e.g. build a generic aircraft model with named parameters and define all aircraft specific
parameters in the corresponding Matlab scripts. By running a specific .m data file before the
simulation it is then very easy to switch between different aircraft.

9At the time of this documentation, some aerodynamic parameters could only be roughly estimated;
future wind tunnel experiments and flight test based parameter identifications will come up with
more precise parameter values.

10PJease refer to the nomenclature for the names and meanings of the parameters. The general idea is
to append a trailing _sky to all UAV parameters and a trailing _diver to all skydiver parameters.

37

the vane limits'' of the UAV

et_min_sky = 0;
et_max_sky = 0.87;
et_d_max_sky = 3;

ze_min_sky = -0.87;
ze_max_sky = 0.87;
ze_d_max_sky = 3;

the kinetic parameters of the UAV

m_sky = 1;
g = 9.81;

I_x_sky
I_y_sky
I_z_sky
I_x_z_sky

nn
S O O
O R B =

I_f_sky = [...
I_x_sk 0 -I_x_z_sky;

0 I_y_sky 0;
-I_x_z_sky 0 I_z_skyl;
I_f_ml_sky = inv (I_f_sky);

the aerodynamic parameters of the skydiver
1 _mu_diver = 1;
S_diver = 1;

C_L_al_diver = 3;

C_D_O_diver = 1;
C_D_al_diver = 1;
C_D_al_2_diver = 1;

C_m_al_diver = 0.5;

C_m_q_diver

1
|
[y

-

C_l_p_diver = C_m_q_diver;

C_n_r_diver -1;

' The rate limitations of the elevator vanes are quite overestimated to allow for a more efficient position
control; the elevators of the current UAV prototype are about five times slower than assumed.

38

and the kinetic parameters of the skydiver:
m_diver = 60;

I_x_diver = 3;

I_y_diver = 10;

I_z_diver = 10;
I_x_z_diver = 0;

I_f_diver = [

I_x_diver 0 -I_x_z_diver;
0 I_y_diver 0;
-I_x_z_diver 0 I_z_diver];
I_f_ml_diver = inv (I_f_diver);

At the end we inform the user that the script has successfully been completed:

disp (’sky_diver_dat.m done.’);

39

2. Animation

2.1. Animation overview

The level-2 s-function (sd sfun.m) in the lower left of figure 1.1 draws the skydiver
and the UAV in a new figure before the simulation starts and is then called in every
simulation interval to redraw both objects with their current attitudes and positions.

The mask of the s-function is depicted in figure 2.1.

Block Parameters: Animation *
MSFunction (mask)

Parameters Viewr angle
._/'_ — 4
[camera view - N
= f |
—| |_
-\ -
A AY i
Axis visible N //

1.000 99.0

Cancel Help Apply

[Take video (Set view angle to 50)

Figure 2.1.: Animation mask

The mask allows the user to choose a normal or a camera view, visible or invisible axes,
the viewing angle of the camera view, and whether or not a video of the animation is
recorded.

If the user selects the normal view with visible axes (figure 2.2) the axis limits are
automatically calculated to always include the UAV and the skydiver.

40

05

Figure 2.2.: Animation with normal view and with axes

If the user deselects the axes (figure 2.3), it becomes invisible but its limits are still
automatically computed.

Figure 2.3.: Animation with normal view and without axes

In camera view mode (figure 2.4) with deselected axes we display the actual view as seen
from the camera on-board the UAV.

41

Figure 2.4.: Animation with camera view but without axes

If we make the axes visible, the green square in figure 2.5 indicates the current view of
the camera.

Figure 2.5.: Animation with camera view and with axes

The default camera view angle (field of view) is assumed to be 50° (figure 2.1). If we
decrease the field of view to e.g. 20° (figure 2.6) the skydiver appears much bigger and
cannot be displayed in the green camera view square in its entirety.

42

Figure 2.6.: Camera view angle decreased from 50° to 20°

2.2. sd_sfun.m

The level-2 s-function

function sd_sfun (block)

is responsible for the animation. Its functions are called by the Simulink run-time
system at the beginning, during, and at the end of the simulation. All communication

between the run-time system and the animation functions is done via a block object
(section 2.2.2.9). The main function just calls its setup function:

setup (block);

2.2.1. setup

In the initialization function

function setup (block)

we define a number of variables the run-time system needs to know. At first, we specify
the five input and zero output ports of the s-function

block . NumInputPorts = 5;
block.NumOutputPorts = O;

indicate that they inherit their compiled properties from the model

43

block.SetPreCompInpPortInfoToDynamic;
block.SetPreCompOutPortInfoToDynamic;

and override some properties of each input port

block.InputPort (1) .Dimensions = 3;
block.InputPort (1) .DatatypeID = 0; % double
block.InputPort (1) .Complexity = ’Real’;
block.InputPort (1).DirectFeedthrough = false;

block.InputPort (2).Dimensions = 3;
block.InputPort (2).DatatypeID = 0; 7 double
block.InputPort (2).Complexity = ’Real’;
block.InputPort (2).DirectFeedthrough = false;

block.InputPort (3).Dimensions = 4;
block.InputPort (3).DatatypeID = 0; % double
block.InputPort (3).Complexity ’Real ’;
block.InputPort (3).DirectFeedthrough = false;

block.InputPort (4).Dimensions = 3;
block.InputPort (4).DatatypelD 0; % double
block.InputPort (4).Complexity = ’Real’;
block.InputPort (4).DirectFeedthrough = false;

block.InputPort (5).Dimensions = 3;
block.InputPort (5).DatatypelID 0; % double
block.InputPort (5).Complexity ’Real ’;
block.InputPort (5).DirectFeedthrough = false;

We declare that the mask of the s-function has four dialog parameters

block.NumDialogPrms = 4;

tell the run-time system that we only want the animation to take place in major inte-
gration steps

block.SampleTimes = [0 1];

and that it does not have to save and restore any model simulation states:

block.SimStateCompliance = ’HasNoSimState’;

Finally, we register the start, update, and terminate functions with the run-time
system:

block.RegBlockMethod (’Start’, @Start);
block.RegBlockMethod (’Update’, QUpdate);
block.RegBlockMethod (’Terminate’, Q@Terminate);

44

2.2.2. start

The initialization function

function Start (block)

is called by the run-time system once before the start of the simulation.

2.2.2.1. Figure and Axes

We clear the command window

clc

and check whether there is a figure window from a previous simulation:
existing_figure = 5

findobj (’Type’,’Figure’,’Name’,’Sky animation’);
If this is the case

if “isempty (existing_figure)

we close the old window

close (existing_figure)
end

and open a new one

sd.h_figure = figure (
>’NumberTitle’, ’off’,
’Name ’, ’Sky animation’,
’BackingStore’,’off’,
’MenuBar’, ’figure’, ...
’Position’, [0 O 1024 768],
’Clipping’, ’off’,
’renderer’, ’opengl’);

In the figure we open an axes with perspective projection and inverted z- and z-axes

sd.h_axes = axes (
’Projection’, ’perspective’,
’XDir’, ’reverse’,
’>ZDir’, ’reverse’);

switch on the grid

grid on

45

set the viewing angle

view (66, 30)

use the same units along each axis and fit the axes box tightly around the objects

axis image

and give the user the opportunity to immediately use the mouse to rotate the axes:

rotate3d

2.2.2.2. Hull of the UAV

For the UAV we create a paraboloid of revolution by revolving a parabola around its
axis. We define the level of detail as a positive integer

m = 5;

from which we derive the number of revolution steps as a multiple of six':

n = 6*m;

We define the maximum radius of the paraboloid

r_max = 2;

and a factor that scales the integer (radius) values towards realistic metric dimensions:
scaling_factor = 0.1;

In order to come up with a greater mesh density at the tip of the paraboloid we define
a linearly spaced radius vector

r = linspace (0, r_max, n);

and compute” the corresponding z-values:

z = -r.”2 + r_max;

Finally, we use revolve.m® to rotate the parabola about its axis
[hull_x, hull_y, hull_z] =

revolve (z*scaling_factor, r*scaling_factor, n);

and invert the z-direction so that the z-axis of the body-fixed frame points towards the
middle of one of the vanes (figure 1.11):

hull_x = -hull_x;

!Three vanes with at least two faces.

2The negative sign opens the paraboloid towards the negative z-axis, which points upwards in the flight
mechanical frame. The r_max-offset moves the origin of the UAV into its “center” at z = rpqz.

3We are not limited to a paraboloid here. We can use revolve.m to rotate arbitrary profiles about
the z-axis.

46

2.2.2.3. Vanes

To model the vanes we divide the circumference of the paraboloid in three 120°-sections
(figure 1.11) and use the m upper (outer) vertices (n - m : n). The second vane starts
at the x-axis and then stretches one third of a full circle clockwise (1 : n/3 + 1):

hull_ x(n - m : n, 1 : n/3 + 1);
hull_ y(n - m : n, 1 : n/3 + 1);
hull_z(n - m : n, 1 : n/3 + 1);

vane_2_X
vane_2_y
vane_2_z

In order to move the vertices more easily during the simulation we transform the surface
into (a patch with) vertices and faces

[vane_2_f, vane_2_v] = surf2patch (vane_2_x, vane_2_y, vane_2_z);

and create® the patch:

sd.vane_2.handle = patch (
’Faces’, vane_2_f,
>Vertices’, vane_2_v,
>FaceVertexCData’, [0.3 0.3 0.3],
>FaceColor’, ’flat’,
’FacelLighting’, ’gouraud’,
’AmbientStrength’, 0.95,
>EdgeColor’, ’none’);

Since the coordinates of the vertices will change during the simulation we save the
original vertices

sd.vane_2.vertices = vane_2_vV;

and the surface coordinates in the communication structure too:

sd.vane_2.x = vane_2_Xx;
sd.vane_2.y = vane_2_y;
sd.vane_2.z

vane_2_2z;

The code for the first (and the third) vane is more or less identical; the section (n/3 +
1 : 2xn/3 + 1 and 2%n/3 + 1 : n + 1 respectively) on the circumference being the
only real difference:

vane_1_x hull _x(n - m : n, n/3 + 1 : 2%n/3 + 1);
vane_1_y = hull_y(n - m : n, n/3 + 1 : 2*xn/3 + 1);
vane_1_z hull_z(n - m : n, n/3 + 1 : 2%n/3 + 1);

[vane_1_f, vane_1_v] = surf2patch (vane_1_x, vane_1_y, vane_1_z);

4We save the patch handle in the communication structure sd (which is saved in the BlockHandle
UserData in turn, section 2.2.2.9) in order to transfer information between the functions of the
s-function.

47

sd.vane_1.handle = patch (
’Faces’, vane_1_f,
’Vertices’, vane_1_v,
’FaceVertexCData’, [0.3 0.3 0.3],
’FaceColor’, ’flat’,
’FacelLighting’, ’gouraud’,
’AmbientStrength’, 0.95,
’EdgeColor’, ’none’);

sd.vane_1.vertices = vane_1_v;
sd.vane_1.x = vane_1_x;

sd.vane_1.y vane_1_y;
sd.vane_1.z vane_1_z;

vane_3_x hull_x(n - m : n, 2*n/3 + 1 : n + 1);
vane_3_y = hull _y(n - m : n, 2%*n/3 + 1 : n 1);
hull_z(n - m : n, 2*n/3 + 1 : n + 1);

+

vane_3_z
[vane_3_f, vane_3_v] = surf2patch (vane_3_x, vane_3_y, vane_3_z);

sd.vane_3.handle = patch (
’Faces’, vane_3_f,
’Vertices’, vane_3_v,
’FaceVertexCData’, [0.3 0.3 0.3],
’FaceColor’, ’flat’,
’FacelLighting’, ’gouraud’,
’AmbientStrength’, 0.95,
>’EdgeColor’, ’none’);

sd.vane_3.vertices = vane_3_v;
sd.vane_3.x = vane_3_Xx;

sd.vane_3.y vane_3_Y;
sd.vane_3.z vane_3_z;

2.2.2.4. Hull display

After we have created the vanes as separate objects we delete the corresponding faces
of the hull:

hull_x(n - m + 1 n,) = [];
hull y(n - m + 1 n, :) = ;
hull_z(n - m + 1 n, :) = 3

48

Finally, we transform the hull surface into a patch with faces and vertices

[hull_f, hull_v] = surf2patch (hull_x, hull_y, hull_z);

display the hull patch

sd.hull .handle = patch (
>Faces’, hull_f£f,
>Vertices’, hull_v,
’FaceVertexCData’, [0.8 0.8 0.8],
>FaceColor’, ’flat’,
’Facelighting’, ’gouraud’,
’AmbientStrength’, 0.95,
’EdgeColor’, ’none’);

and save the original hull vertices in the communication structure (section 2.2.2.9)

sd.hull.vertices = hull_v;

2.2.2.5. z-axis line

A one meter long red line (figure 2.2)
sd.x_axis_line.handle =

line ([O 11, [0 O], [0 O], ’LineWidth’, 1, ’Color’, ’red’);
indicates the body-fixed z-axis (and by that the first vane) of the UAV.

As with the hull and the vanes, we save the original coordinates of the x-axis in the
communication structure for position manipulation during the simulation:

sd.x_axis_line.xdata = get (sd.x_axis_line.handle, ’XData’);

sd.x_axis_line.ydata get (sd.x_axis_line.handle, ’YData’);

sd.x_axis_line.zdata get (sd.x_axis_line.handle, ’ZData’);

2.2.2.6. Field of view

In camera view mode (figure 2.5) we display a green square to indicate the camera field
of view. The coordinates of this square are updated in every simulation step; right now
we just initialize the polygon as a single green line:

sd.fov.handle =
line ([0 0], [0 O], [0 O], ’LineWidth’, 0.1, ’Color’, ’green’);

49

2.2.2.7. Skydiver

In order to display the skydiver we load the 3D model that we previously created in
section 2.3

load diver.mat

save its original faces and vertices in the communication structure

sd.diver.faces = diver_faces;
sd.diver.vertices = diver_vertices;

and display the skydiver as a single patch with colored faces:

sd.diver.handle = patch (
’Faces’, sd.diver.faces,
>Vertices’, sd.diver.vertices,
>FaceVertexCData’, color_faces,
’FaceColor’, ’flat’,
’Facelighting’, ’gouraud’,
’AmbientStrength’, 0.95,
’EdgeColor’, ’none’);

The default light environment is a bit dark; therefore, we create two light objects, one
“above” and one “below” the scene:

light (’Position’, [0 0O 100000])
light (’Position’, [0 O -100000])

The default surface reflectance properties give the skydiver an unnatural glossy ap-
pearance. Especially his skin® looks much more natural with the appropriate material

property:

material dull;

2.2.2.8. Video

If the user has checked the corresponding box in figure 2.1 indicating that he wants to
record a video during the simulation

if block.DialogPrm(3).Data
we create a video writer object that will write into the file sky_diver.mp4 during the
simulation

sd.video = VideoWriter (’sky_diver .mp4’, ’MPEG-4’);

SUnfortunately, we cannot easily set different material properties for different faces or objects.

20

set the frame rate to 100 Hz®

sd.video.FrameRate =

100;

and open the connection from the writer to the file:

open (sd.video);

end

2.2.2.9. Communication structure

In the start function we have

created graphical objects that we want to manipulate (e. g.

move) in the update function that is called by the run-time system in every simulation

interval.

Unfortunately, transferring information (graphics handles, vertices, ...) between two

functions of an s-function is

a bit tricky. The most elegant way according to [4] is

to bundle all the information in a structure and save this structure in the UserData
property of the block object that is automatically handed over to every function as
a parameter by the run-time system. Therefore, we finally save’ the communication
structure sd in the mentioned property:

set_param (block.Block

2.2.3. revolve.m

The function

function [xx, yy, zz]

Handle, ’UserData’, sd);

= revolve (z, r, n)

creates a solid of revolution (xx, yy, zz) from a given polygon (radius vector r, height
vector z). The number of vertices on the circumference of the solid can be defined by

the third parameter n (figure

2.7).

5We have to set the simulation sample time (Simulation/Model Configuration Parameters/Solver/Fixed-

step size) to 0.01 manually.

nevertheless, the video will be

with the corresponding sample
"In the other function (section 2.

On some computers we will lose real-time during the simulation;
in real-time. We can choose any other video frame rate (together
time).

2.4, ...), we can later on retrieve the communication structure via:

sd = get_param (block.BlockHandle, ’UserData’);

51

1

091
08

0.8
07
0.6 1 0.6 <

05

04t 4 044

03

0.2
0.2

—

0.1 _

T 0 ‘W
0b—— : 1 s 0s N

0 01 02 03 04 05 06 07 08 09 1 ’ 0 o5 11 05 O

(a) Parabola (b) Paraboloid

Figure 2.7.: revolve creates a solid of revolution from a given polygon.

Initially, we make sure that the radius and height vectors are column vectors:

r(:);

r
z = z(:);

Next, we create an angle vector for the n vertices® on the circumference as a row vector:
theta = linspace (0, 2%*pi, n + 1);
Multiplying the radius column vector with the corresponding row vectors (cos and sin

of the angle vector) now automatically creates the xx and yy domain mesh matrices used
for the surf command:

xx = r*cos (theta);
yy = r*sin (theta);

Since all vertices on a specific circumference of the paraboloid have the same z-component
the corresponding zz height matrix simply consists of replicas of the height vector:

zz = z%ones (1, n + 1);

2.2.4. update

The update function
function Update (block)

8Start and end vertices are identical.

52

is called by the run-time system in every (major) simulation step. Its main task is to
move the vertices of the objects in the scene. Therefore, our first step is to read the
communication structure data (handles, coordinates, ...) back into the local variable
sd:

sd = get_param (block.BlockHandle, ’UserData’);

2.2.4.1. Hull

Using the communication structure we can extract the original hull vertex matrix:

hull_v = sd.hull.vertices;

During the simulation an object is animated by rotating and translating every single of
its vertices in every simulation step. The general idea is to move (translate) the object
into the origin, then rotate the object about the origin using the current Euler angles
and then move the rotated object to the current position.

Since we know the vertices of the original hull, our first step is to rotate all vertex vectors
by the (inverse”) transformation matrix (DCM) computed in m fg from the current Euler
angle vector fed into the s-function via the second input port:

hull v = (m_fg (block.InputPort(2).Data)’*xhull_v’)’;

Then we can do the translation by adding the current position (incoming via the first
s-function input port) to the vertex matrix:

hull_v =
hull_v +
repmat (block.InputPort(1).Data’, size (hull_v, 1), 1);

Finally, we set all vertices to their new positions:

set (
sd.hull.handle,
’Vertices’,
hull_v);

2.2.4.2. Vanes

We animate all three vanes by calling the separate function vane rotate using the
original vane vertices and the current vane angles (1;, ¢) from the third s-function input
port as parameters:

90rthogonal transformation matrices have the nice property that their inverses can easily be computed
by their transposes: M1 = MT

ortho ortho

23

vane_rotate (block, sd.vane_1,
block.InputPort (3).Data(1l),
block.InputPort (3).Data(4))

vane_rotate (block, sd.vane_2,
block.InputPort (3).Data(2),
block.InputPort (3).Data(4))

vane_rotate (block, sd.vane_3,
block.InputPort (3).Data(3),
block.InputPort (3).Data(4))

2.2.4.3. z-axis line

The rotation and motion of the z-axis line is done just like the transformation of the
hull. We combine the (two) vertices in a matrix

x_axis_line_data = [
sd.x_axis_line.xdata’,
sd.x_axis_line.ydata’,
sd.x_axis_line.zdata’];

rotate the vectors via m_fg and the second input port
x_axis_line_data =
(m_fg (block.InputPort(2).Data)’*x_axis_line_data’)’;

and translate them to the current position:

x_axis_line_data =
x_axis_line_data +
repmat (block.InputPort (1).Data’,
size(x_axis_line_data, 1), 1);

Finally, we use the rotated and translated data to update the line object:

set (
sd.x_axis_line.handle,
>’XData’, x_axis_line_data(:,1),
>YData’, x_axis_line_data(:,2),

>ZData’, x_axis_line_data(:,3));

2.2.4.4. Skydiver

The exact same approach (vertices collection, rotation, motion, and data updating) is
used for the update of the skydiver:

o4

diver_v = sd.diver.vertices;

diver_v = (m_fg (block.InputPort(5).Data)’*diver_v’)’;

diver_v
diver_v + ...
repmat (block.InputPort(4).Data’, size (diver_v, 1), 1);

set (
sd.diver.handle,
’Vertices’,
diver_v);

2.2.4.5. Camera

Depending on the choice of the user in figure 2.1
if block.DialogPrm(2).Data

we make the axes visible

axis on
or invisible:
else

axis off

end

If the user has checked camera view in figure 2.1

if block.DialogPrm(1).Data

we position the camera in the current center of the UAV
cam_pos = block.InputPort(1l).Data’;
campos (cam_pos);

and define the direction'’ the camera is looking at to be the “end point” of the z-axis
line:
cam_target = x_axis_line_data(2,:);

Since the camera is gyro stabilized in two axes (roll and pitch) we additionally assume
that the target vector lies in the x4-y,-plane:

10Gince we used a perspective projection in section 2.2.2.1 only the direction of the target vector is
utilized; its length is irrelevant [5].

95

cam_target (3) = cam_pos (3);
camtarget (cam_target)

The user can define the camera viewing angle in figure 2.1:

va = block.DialogPrm(4).Data;

camva (va);

2.2.4.6. Field of view (FOV)

In order to generate the green FOV'! square in figure 2.5 we define the unit'® vector d
from the camera position to the camera target:

d = cam_target - cam_pos;
Additionally, we compute the half-width of the FOV square in 1m distance from the
camera position (i.e. at the camera target) according to section 2.2.5:

fov_hw = atan (va/2*pi/180);

We define the FOV vertical unit vector (down)
fov_vv = [0 0 1];

and compute the resulting horizontal unit vector (to the left):

fov_hv = cross (d, fov_vv)

Now, we can compute all four vertices of the FOV square using half-width and unit
vectors:

fov_hwx(-fov_vv + fov_hv);
fov_hwx(fov_vv + fov_hv)];

cam_target

fov_v = [...
cam_target + fov_hwx(fov_vv + fov_hv);
cam_target + fov_hwx(fov_vv - fov_hv);
cam_target + fov_hwx*(-fov_vv - fov_hv);
+
+

cam_target

and display the square

set (sd.fov.handle,
>XData’, fov_v(:,1),
>YData’, fov_v(:,2),
>ZData’, fov_v(:,3))

1Gee fov_test.m for a better understanding on how the field of view is defined and manipulated in
Matlab.
12Gince we defined the camera target at the end of the 1 m long z-axis line, d is a unit vector.

o6

2.2.4.7. Visibility

In camera mode, the UAV itself should not be visible

set ([
sd.hull.handle,
sd.vane_1.handle,
sd.vane_2.handle,
sd.vane_3.handle,
sd.x_axis_line.handle,
1,
’visible’,
Yoff)

but the FOV square is visible:

set ([
sd.fov.handle,
1,

’visible’,
’on’)

If he user has deselected camera mode in figure 2.1

else

we let Matlab choose appropriate values for the position, the target, and the viewing
angle of the camera:

campos (’auto’);
camtarget (’auto’);
camva (’auto’);

In normal view (non-camera mode) we make the UAV visible

set ([
sd.hull.handle,
sd.vane_1.handle,
sd.vane_2.handle,
sd.vane_3.handle,
sd.x_axis_line.handle,
i
’visible’,
’on’)

and the FOV square invisible

o7

set ([
sd.fov.handle,
1,
’yisible’,
Yoff)
end

Before we can see the current frame we have to tell the run-time system to actually
display all objects in the scene

drawnow limitrate

Using the limitrate parameter can speed up the simulation significantly.

2.2.4.8. Video

If the user has chosen to record a video

if block.DialogPrm(3).Data

we save a screenshot'® of the current frame in the video file defined in section 2.2.2.8:

writeVideo (sd.video,
getframe (sd.h_figure, [252 118 556 556]));

end

2.2.5. fov_test.m

We wrote this small external'* script fov_test.m to shed some light on how Matlab’s
camera field of view (FOV) is computed and displayed. For that purpose, we created
a number of parallel squares on the boundaries of the FOV pyramid according to [5].
As long as the camera is kept in the correct position, the camera target vector lies on
the line linking the camera and the target, and we use perspective projection instead
of the default orthographic projection, all FOV squares seem to exist in the same place
(figure 2.8a). As soon as we move the camera is becomes obvious that this is not the
case (figure 2.8b).

13By defining an empirically determined rectangle as the second parameter of the getframe command
we take a video of only the actual FOV. This works precisely only if the viewing angle is set to 50°.
14fov_test is not needed for the simulation and animation of the UAV and the skydiver.

o8

(a) All FOV squares match. (b) FOV squares are distinguishable.

Figure 2.8.: Only in perspective projection mode all FOV squares appear as one (2.8a)
if the camera position and the camera target vector fit.

In order to create figure 2.8 we define a sphere around the origin

sphere

make all axes equidistant

axis equal

and invisible

axis off

and switch on perspective projection mode:

set (gca, ’Projection’, ’perspective’)

We position the camera at x = —10

campos ([-10, 0, 01)

let it look at'® the sphere
camtarget ([0, O, 0])

and set the camera viewing angle'® to a moderate 30°:

15In perspective projection mode the camera target vector could have an arbitrary z-component of
x > —10. We could e. g. have used camtarget ([-3, 0, 0]).
16 Any other valid viewing angle would come up with an equivalent result.

29

va = 30;
camva (va)

We want to draw all squares in the already open axes

hold on

and start a loop over ten squares:

for x =1 : 10

—
\
\
VA \\\\\\\\T\T\\T\\\“
va/2 .
X camera
position

Figure 2.9.: Size of the FOV squares depending on the viewing angle va and the distance
from the camera x.

According to figure 2.9, we can calculate the half-width z of a square in the distance of
x from the camera position via the arctangent of half of the viewing angle:

va Z
arctan (—) = —
2 T

z = x*atan(va/2*pi/180);

Using the distance of the current square from the origin

xx = -10 + x;

we can finally draw the current square

plot3 (
[xx, xx, xx, XX, XXJ,
[_Z, z, z, —2Z, _Z]3
[_Z’ -z, z, zZ, _Z])
end

60

2.2.6. terminate

The terminate function

function Terminate (block)

is called by the run-time system at the end of the simulation. We use it to clean up the
video recording. If the user has decided to record a video

if block.DialogPrm(3).Data

we extract the communication structure

sd = get_param (block.BlockHandle, ’UserData’);

and finalize the video writer object we created in section 2.2.2.8:

close (sd.video);

end

2.2.7. vane rotate

We outsourced the extensive computation of the vane deflections from section 2.2.4.2
into:

function vane_rotate (block, vane, roll_angle, yaw_angle)

Once again, the basic idea is to translate (move) the vane into the origin with one of its
vertices, do the rotation about a specific axis in the origin, and translate (the rotation
axis of) the vane back to its old position. Since there is a roll and a yaw rotation we
have to do both deflections one after the other.

2.2.7.1. Roll

For the roll deflection (1) we define the lowest outer vane vertices as axis points

vane_roll_axis_point_1 = [
vane.x(1,1),
vane.y(1,1),
vane.z(1,1)];

vane_roll_axis_point_2 = [

vane.x(1,end),
vane.y(1,end),
vane .z (1,end)];

and the roll axis to go through these two vertices:

61

vane_roll_axis = vane_roll_axis_point_2 - vane_roll_axis_point_1;

After buffering the vane vertices

vane_v = vane.vertices;

we can translate the vane with its first roll axis vertex into the origin:
vane_v = vane_v - repmat (
vane_roll_axis_point_1, size(vane_v, 1), 1);
We can now roll all vane vertices about the roll axis in the orig:
vane_v = (rotation_about_arbitrary_axis (
vane_roll_axis, roll_angle)*vane_v’)’;
Finally, we have to translate the first roll axis vertex from the origin back to its previous
position:

vane_v = vane_v + repmat (
vane_roll_axis_point_1, size(vane_v, 1), 1);

2.2.7.2. Yaw

The yawing axis is defined by the lowest and the highest middle vertex of the vane:

vane_yaw_axis_point_1 = [
vane.x(1,(end + 1)/2),
vane.y(1,(end + 1)/2),
vane.z(1,(end + 1)/2)1;

vane_yaw_axis_point_2 = [
vane.x(end,(end + 1)/2),
vane.y(end,(end + 1)/2),
vane.z(end, (end + 1)/2)1;

Unfortunately, we have to roll the yaw axis before we can yaw. Therefore, we merge
both vertices into a matrix
vane_yaw_axis_points = [

vane_yaw_axis_point_1; vane_yaw_axis_point_Q];
move the yaw axis with the first roll axis point into the origin
vane_yaw_axis_points = vane_yaw_axis_points - repmat (

vane_roll_axis_point_1, 2, 1);

rotate the yaw axis about the roll axis in the origin

62

vane_yaw_axis_points =
(rotation_about_arbitrary_axis (
vane_roll_axis, roll_angle)*vane_yaw_axis_points’)’;
and move the yaw axis back up again into its previous position
vane_yaw_axis_points = vane_yaw_axis_points + repmat (
vane_roll_axis_point_1, 2, 1);
Now, we can read the rolled yaw axis vertices from the matrix

vane_yaw_axis_point_1 = vane_yaw_axis_points(l,:);
vane_yaw_axis_point_2 = vane_yaw_axis_points(2,:);

and define the final yaw axis
vane_yaw_axis = vane_yaw_axis_point_2 - vane_yaw_axis_point_1;
The rest is just the usual procedure: Move the vane down with its first yaw axis vertex
into the origin:
vane_v = vane_v - repmat (
vane_yaw_axis_point_1, size(vane_v, 1), 1);
rotate (¢) the vane around its yaw axis in the origin
vane_v = (rotation_about_arbitrary_axis (
vane_yaw_axis, yaw_angle)*vane_v’)’;
and translate the vane back up again with its first yaw axis vertex into its previous
position:
vane_v = vane_v + repmat (
vane_yaw_axis_point_1, size(vane_v, 1), 1);
Finally, we have to rotate

vane_v = (m_fg(block.InputPort (2).Data)’*vane_v’)’;

and translate the vane together with the hull:

vane_v = vane_v + repmat (
block.InputPort (1) .Data’, size(vane_v, 1), 1);

and update all vane vertices:

set (
vane .handle,
’Vertices’,
vane_v) ;

63

2.2.8. n fg

The helper function
function mfg = m_fg (ph_th_ps)

computes the (direction cosine) transformation matrix from the inertial to the body-
fixed frame (figure 1.31) using trigonometric functions of the Euler angles (@, ©, and
¥). Since the sine and the cosine of the Euler angles are used more than once we buffer
them in extra variables:

cos_ps = cos (ph_th_ps(3));
sin_ps = sin (ph_th_ps(3));
cos_th = cos (ph_th_ps(2));
sin_th = sin (ph_th_ps(2));
cos_ph = cos (ph_th_ps(1));
sin_ph = sin (ph_th_ps(1));

Now we can compute the single transformation matrices for the rotation about the z-axis

m_ps = [
cos_ps, sin_ps, O;
-sin_ps, cos_ps, O0; ...
0, 0, 11;

the y-axis
m_th = [.
cos_th, 0, -sin_th;
o, 1, 0;

sin_th, 0, cos_th]

[

and the z-axis:
m_ph = [.
1, 0, 0;
o, cos_ph, sin_ph; .
0, -sin_ph, cos_phl;
Finally, we combine all three rotations by multiplying the single matrices:

mfg = m_ph * m_th * m_ps;

Alternatively, we could have multiplied the matrices symbolically

mfg = [
cps*cth, cth*sps, -sth;
cps*sph*sth - cph*sps, cph*cps + sph*sps*sth, cth*sph;
sph*xsps + cph*cps*sth, cph*sps*sth - cps*sph, cph*cth];

in order to save a little bit of computation time.

64

2.2.9. rotation about arbitrary axis

For a transformation (rotation) about an arbitrary axis we wrote a helper function
according to [6]:

function m = rotation_about_arbitrary_axis (axis, angle)

In the first step we make sure the rotation axis vector is a unit vector:

n = axis/norm(axis);

We buffer the components of the (unit) axis vector

nl = n(1);
n2 = n(2);
n3 = n(3);

the sine and cosine of the rotation angle

cos (angle);

(@]
I

S sin (angle);

and the cosine unit complement in extra variables:

cl =1 - c;

nl*xnlxcl + c, nl*n2*cl - n3*s, nl*n3*cl + n2%*s;
n2*nl*xcl + n3*s, n2*n2*xcl + c, n2*n3*cl - nlx*xs;
n3*nlxcl - n2*s, n3*n2*xcl + nl*xs, n3*n3*cl + 2] g

2.3. Skydiver model

Fortunately, we found an extremely detailed (297,984 vertices) 3D model (figure 2.10)
of a male skydiver at [7].

65

Figure 2.10.: 3D model of a male skydiver from [7]

Eric Johnson has written a nice little function [8] to import binary STL files into Matlab
and Matlab itself offers its reducepatch command to decrease the number of vertices of
the model to an amount that can be displayed by a contemporary computer in real-time.
Additionally, we want to create the illusion of a decent skydiver by painting parts of his
body with appropriate colors (figure 2.11).

Figure 2.11.: Skydiver with “clothes on”

In order to create a reasonable Matlab model of a skydiver we use the following steps in
an external script called diver_stl2mat.m:

After a soft reset

clear all
close all
clc

we define that our final model should only have about 5000 vertices:

detail_factor = 0.1;

We read [8] the STL file into a Matlab structure

diver_struct = stlread (’diver_slow.stl’);

and reduce the complexity of the model significantly:
[diver_faces, diver_vertices] =
reducepatch (diver_struct, detail_factor);
Since the flight mechanical inertial system will have its z-axis pointing “down” we have
to invert the diver’s z-axis

diver_vertices(:,3) = -diver_vertices(:,3);

and rotate (exchange with one negative sign) its z- and y-axes:

buffer = diver_vertices(:,1);

diver_vertices (:,1) -diver_vertices (:,2);

diver_vertices (:,2) buffer;

In order to come up with a reasonably sized human (=~ 1.80m) we scale the model:

diver_vertices = diver_vertices/90;

We move the origin of the coordinate system into the mean of all vertices, which is not
exactly the skydiver’s center of mass but comes sufficiently close:

diver_vertices =
diver_vertices -
repmat (mean (diver_vertices),
size (diver_vertices, 1), 1);

We define colors for different parts of the body

color_skin = [192, 122, 88]/255;
color_shirt [255, 0, 0]/255;
[0, 0, 255]/255;
[0, 0, 0]/255;

color_pants

color_shoes

determine the number of vertices and faces of the reduced model
n_vertices = size (diver_vertices, 1);

n_faces = size (diver_faces, 1);

and initialize the arrays that will later hold the colored vertices and faces':

color_vertices = zeros (n_vertices, 3);
color_faces = zeros (n_faces, 3);

1"We know that all faces of this model are triangles and therefore have exactly three vertices.

67

In a loop over all vertices

for i_vertex = 1 : n_vertices

we define certain areas (e.g. the pants)
if
diver_vertices(i_vertex, 1) < -0.03 &&
diver_vertices(i_vertex, 3) > -0.25
in which the vertices (and later the faces) have a certain color:

color_vertices(i_vertex, :) = color_pants;

This coloring based on the location of the vertices is then done for the vertices of the
other body parts too:

elseif
diver_vertices (i_vertex, 3) <= -0.25
color_vertices(i_vertex, :) = color_shoes;
elseif
diver_vertices (i_vertex, 1) >= -0.03 &&
diver_vertices(i_vertex, 1) < 0.47 &&
diver_vertices (i_vertex, 2) > -0.71 &&
diver_vertices(i_vertex, 2) < 0.71

color_vertices(i_vertex, :) = color_shirt;
else
color_vertices(i_vertex, :) = color_skin;
end
end

In a loop over every face

for i_face = 1 : n_faces

we take the mean'® of the colors of all three vertices of a face to define the color of that
face:

18The random location of border vertices makes the “borderline” between two differently colored body
parts look pretty ragged. Computing the mean of all three vertex colors of a border face makes the
transition between body parts a little bit smoother. All three vertices of non-border faces have the
same color; the mean does not change that.

68

color_faces(i_face, :) =
mean (color_vertices(diver_faces(i_face, :), :));

end
To verify that everything has worked out as expected, we can draw (figure 2.11) the
skydiver in a realistic environment:

patch (...
’Faces’, diver_faces,
>Vertices’, diver_vertices,
>FaceVertexCData’, color_faces,
>FaceColor’, ’flat’,
’Facelighting’, ’gouraud’,
’AmbientStrength’, 0.95,
’EdgeColor’, ’none’);

light (’Position’, [0 O 1000])
light (’Position’, [0 O -1000])

material dull;
axis equal

rotate3d

Finally, we save the vertices, faces, and face colors in a binary Matlab file

save diver .mat diver_vertices diver_faces color_faces

that is read by section 2.2.2.7 during the initialization of the animation.

69

3. Skydiver flight data

Instead of simulating the skydiver we can also use flight data that have been recorded
during various skydives. The data are preprocessed and enter the simulation via the
From Workspace Block in figure 3.1.

—Om_K_f_sky _Om_K_f_sky
- zgc
> Praver , o | T
P _Ph_sky et1c Pilet 1.c _Phsky _Ph_sky
xfec xfc
_s_g_sky ph_c ph_c I ‘
I—» 7sigid\ver yfc yfc _s_g_sky _s_g_sky s g_sky
Position _s_g_diver ‘ ‘ _s_g_sky
T X »ith c _V_K_f sky _V_K_f sky
_S_g_sky
‘ et2c et2c
_Ph_sky V_A_sky V_A_sky
ps_c ps_c
_V_K_g_sky
- al_sky al_sky
Position controller ‘ ‘ ‘
Om_K_f_sk
Real-Time Pacer —om sty mu_sky mu_sky
Speedup =1 et3.c Pt 3 ¢ - ‘ ‘ ‘ -
_Ph_sky V_K_sky V_K_sky
_Ph_sky
_Ph_sky —
ga_sky ga_sky
1]
’ | [B SN sy
> _V_K g sky ‘ ‘ ‘
_V_K_g_sky _V_K_g_sky
Attitude and Sky + Wind + Track Sky displays
Altitude controller
From
Workspace
>
sm

Figure 3.1.: Using real-world skydive data

3.1. sky diver dat.m

The preprocessing of the skydive data is done in same m-file (sky diver dat.m) that
defines the parameters of the UAV and the skydiver.

First, we load the raw data from one of the flight data MAT-files:
load Skydiver_1238_Tandem

We skip the first frames until the velocity and attitude of the skydiver have stabilized:

skydiver_motion = skydiver_motion (100 end, :);

The first column is the time. It should start with 0.0:

t = skydiver_motion(:, 1) - skydiver_motion(1l, 1);

The frame rate of the data acquisition system is 5Hz, which leads to unrealistically
disjointed and jumpy motions of the skydiver in some parts of the simulation. Therefore,
we resample the data with a frame rate of 100 Hz and a spline interpolation (figure 3.2).

-10— —

12— —
14— N ~ S

<16 —

"Ex._

18— . -

b

o
®

20 B —
i’ 3

22—

Lo
“a,

24— —

| | | | | | | |
0 0.5 1 15 2 25 3 35 4

Figure 3.2.: Spline interpolation of the bank angle

We define the finer step size
dt = 0.01;

and compute the corresponding time vector:

sm(:, 1) = 0 : dt : t(end);

We move the starting position into the origin by subtracting the first values and use the
new time vector for the spline interpolations of the translational components:

sm(:, 2) =
spline (t, skydiver_motion(:, 3) -
skydiver_motion(1l, 3), sm(:, 1));

sm(:, 3) =
spline (t, skydiver_motion(:, 2) -

skydiver_motion(1l, 2), sm(:, 1));

sm(:, 4) =

71

spline (t, -skydiver_motion(:, 4) +
skydiver_motion(1l, 4), sm(:, 1));

The Euler angles have to be converted from degrees to radians; we use the unwrap com-
mand to take care of 2m-jumps (especially in the azimuth angle); the hampel command
effectively eliminates outliers, before we finally do the spline resampling:

sm(:, 5) =
spline (t,
hampel (unwrap
(pi/180*skydiver_motion(:, 5))), sm(:, 1));

sm(:, 6) =
spline (t,
hampel (unwrap
(pi/180*skydiver_motion(:, 6))), sm(:, 1));

sm(:, 7) =
spline (t,
hampel (unwrap
(pi/180* (skydiver_motion(:, 7) + 19.5))), sm(:, 1));

72

4. trimmod

We used trimmod from [9] to find an unaccelerated equilibrium (trim point) where the
skydiver and the UAV both have the same initial velocity vector.

4.1. Documentation

From the documentation of trimmod:

4.1.1. Syntax

trimmod

h = trimmod

4.1.2. Description

trimmod finds the trim point (equilibrium) of a Simulink system. When invoked with-

out left-hand arguments, trimmod opens a new figure with a graphical user interface
(figure 4.1).

73

4]
File Action Options Help

Kinetice/Attitude integrator _Ph___°
Kinetics/Attitude integrator _Ph___ :

_ I IKinetics/Attitude integrator _Ph__:
L]

k/Sky/Kinetics/Attitude integrator _Ph___-
k/'Sky/Kinetics/Attitude integrator _Ph_
kiSky/Kinetics/Velocity integrator _W_K_f__
kiSky/Kineticselocity integrator _W_K_f
kiSky/KineticsVelocity integrator _W_K_f__:
ck/Diver/Kinetics/Atttude integrator _Ph___1
ckDiver/Kinetics/Atttude integrator _Ph___ 2
ck/Diver/Kinetics/Atttude integrator _Ph___ 3
ck/Diver/Kinetics\elocity integrator _WV_K_f__°
ck/Diver/Kinetics\Velocity i K_f
cluDrver.’KlnehMebncrty |ntegratnr WK f 3
fitude
ckJDrver.’KlneilmfPusmun |ntegratur s_g_ 1
ck/Diver/Kinetics/Position integrator _s_g__ 2

ckiDiver/Kinetics/Position intearator s 0 3 e _
< I >

1
2

Figure 4.1.: Trimmod graphical user interface

The user can load a Simulink system (.mdl or .slx), define certain trim point re-
quirements and ask trimmod to calculate the corresponding trim point variables that
are necessary to satisfy the requirements. This trim point is then automatically trans-
ferred to the Simulation; Model Configuration Parameters; Data Import/Export; Load from
workspace dialog box (Input and Initial state) of the corresponding Simulink system.

When invoked with a left-hand argument,

h = trimmod

opens the gui and additionally returns the handle of the figure.

4.1.3. Arguments

trimmod does not need any input arguments. The optional output argument is the
handle of the newly opened figure.

4

4.1.4. Example

e Invoke the graphical user interface: trimmod

e Open the Simulink system named trimtest.mdl: File; Open Model; trimtest.mdl
e Load the trim point from the file trimtest.mat: File; Load Trim Point; trimtest.mat
e Check everything in one view: Action; Overview

e Trim the system: Action; Trim

e Simulate the system using Simulink

e Modify the trim point using the graphical user interface

e Save the new trim point: File; Save Trim point in trimtest.mat

e Trim again, simulate again, ...

4.1.5. Menu

Table 4.1 describes the effect of trimmod’s menu entries.

75

Menu command

Table 4.1.: Trimmod menu

Action

File; Open Model

Open a Simulink system via file select dialog box.

File; Load Trim Point

Load a trim point that has been previously saved,
via file select dialog box.

File; Save Trim Point in ...

Save current trim point in a .mat-file whose name is
the name of the current Simulink system. It might
be useful to save a newly defined trim point before
calling the trim algorithm because trim
requirements and trim variables are modified by the
trim algorithm. (see Action; Untrim)

File; Save Trim Point as

Save current trim point via file select dialog box.

File: Exit TrimMod

Game over. Ask user if he wants to save current
trim point.

Action: Overview

Display an overview over all inputs, states, state
derivatives, and outputs along with their pre- and
post-trim values and the information, whether they
are trim variable or trim requirements.

Action; Trim

Trim current Simulink system using current trim
requirements and trim variables. It might be useful
to save a newly defined trim point before calling the
trim algorithm (see File; Save Trim Point in ...).

Action; Untrim

Countermand the effects of the previous trim. If
trimming was not successful (because of bad
starting guesses, unrealizable trim requirements, or
linear dependencies), the trim algorithm aborts and
the values in the gui represent the current (possibly
totally wrong) state of the algorithm. This error
state might be very useful for the analysis of trim
problems, but a reload of the original trim point
(via Load Trim Point or Untrim) might be necessary
prior to the next trim cycle.

Options; Show Tooltips

Tooltips are very useful for the inexperienced user,
but can become quite annoying after a while.
Therefore, they can be switched off via a check
button.

Help; Help on TrimMod

This manual

Help; About TrimMod

The usual “about”-information: version, copyright,
author, ...

76

4.1.6. Algorithm
A nonlinear time invariant system can be described via its differential equation system

d= f(z,u)

and its output equation system
y=g(z,u)

where u is the input vector, x is the state vector, d = & is the time derivative of the state
vector, y is the output vector, and f and g are nonlinear vector functions, evaluated every
simulation time step. State vector z and input vector u are the independent variables on
the right-hand side of the equations. Both vectors can be combined into a generalized

input vector
[ﬂ
U =
U

Derivative vector d and output vector y are the left-hand side results of the function
evaluations. They can be combined into the generalized output vector

o

Both equation systems can then be combined into

dy = h(zu) (4.1)

where h = [g } is the generalized system vector function.

To start a simulation, all elements of the generalized input vector zu (the complete x and
u vectors) have to be known for the first evaluations of equation (4.1). Unfortunately,
the trim point is often defined as a mixture of u, x, d, and y: The initial speed (z) of
a car might be known, but not the corresponding engine power or the accelerator angle
(u) for no acceleration (d). The radius of the curve might be predefined, but not the
corresponding turning wheel angle, ... Usually the user initially defines some elements
of the generalized output vector dy that have to be satisfied, and some elements of the
generalized input vector zu that are known a priori. The other (unknown) elements
of the generalized input vector xu have to be found by the trim algorithm. The un-
known elements of the generalized output vector dy can then easily be calculated via
equation (4.1) if zu is completely known.

Both generalized vectors can therefore be split up into a known (subscript k) and an
unknown (subscript n) part:
_ |y
W= {dyn]

77

{xuk]

Tu =

Uy,

Accordingly, equation (4.1) too can be split up into two (vector) equations, one for the
predefined elements of dy and one for the unknowns:

dy, = hy(zu) = hy, (i’;:) (4.2)

T
Ay, = hp(zu) = hy, (xu:)
The trim algorithms now has to solve the nonlinear equation system (4.2) with respect
to the unknown vector zu, (called the trim variables vector), while the vector dy; is

called the trim requirements vector.

Trim requirements dy, Those (known) elements of the generalized output vector dy
that have to be satisfied

Trim variables zu,, Those (unknown) elements of the generalized input vector zu that
the trim algorithm is free to vary

For a unique solution of equation (4.2) the number of (unknown) trim variables (length
(xu-n)) has to equal the number of equations, given by the number of trim requirements
(length (dy k)).

If this prerequisite is fulfilled, trimmod (the graphical user interface) calls jj_trim (the
actual trim algorithm).

As shown in figure 4.2, the first step of jj_trim is to put in the initial guess of the trim
variable vector zu,,,, on the right hand side of equation (4.2) and to check whether the
trim requirement vector dyy,, ., is already met by dyy,,,. As this is usually not the case,
a modified multidimensional Newton-Raphson-algorithm is used to iteratively find new
trim variable vectors xu,,,, that - hopefully - finally approach the sought zu,, , .

78

A
dy k
dy k trim y
dy k new Trim
Tangent Point
delta_dy_k First
h k Iteration
dy k old
Initial
Guess
<«— delta xu n —>»
xu_n_old XU _N_new xu n_trim xu_n

Figure 4.2.: One-dimensional Newton-Raphson step

Newton-Raphson relies on the local derivatives which can graphically be represented as
a tangent hyperplane in the multidimensional case. The linearization routine jj-lin
finds the gradients of this tangent hyperplane at xu,, ,, and returns a sensitivity matrix
(Jacobean matrix) jaco, which represents the linear relation

Adyy, = jaco - Azu, (4.3)

of the trim requirement error
Adyk = dyktm‘m - dykozd
with respect to the trim variable correction

Axun = xunnew - xunold (44)

A singular system decomposition (singular values and singular vectors) of the sensitivity
matrix jaco is done, in order to find trim variables that have no influence on any trim re-
quirement, trim requirements that cannot be influenced by any trim variable, and linear
dependencies of trim variables or trim requirements. One or more singular values of zero
indicate a wrong choice of trim requirements and/or trim variables. The corresponding

79

singular vectors clearly show which trim requirements and trim variables are responsible
for the rank deficiency. This detailed information can then be used to chose those trim
requirements and trim variables that correctly describe the desired trim state.

If the sensitivity matrix jaco has full rank (is non-singular), the linear equation system
(4.3) can be solved:
Azu, = jaco\Adyy,

and equation (4.4) can be used to find the next solution vector:

xunnew = munold _|— Amun

4.2. Trimmod overview for UAV and skydiver

Figure 4.3 shows the pre-trim' and post-trim values for the trim variables
e sink velocity of the UAV
e sink velocity of the skydiver
e altitude controller integrator
and the trim requirements
e 1o sink accelerations of the UAV
e 1o sink accelerations of the skydiver
e no difference between the sink velocities of UAV and skydiver
Additionally, we define that

e the UAV’s initial azimuth should be 7 in order to have it “look” towards the
skydiver

e the UAV should have an initial distance of 5m (in positive z-direction) from the
skydiver

'We choose very realistic initial values in order to ease the work for the trim algorithm and prevent it
from iterating into saturations.

80

e . |
INFUT
MRX. TRIM LIN. SIEP FRE-TRIM FOST-TRIM NAME
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 dummy
STATE
MRX. TRIM LIN. SIEP ERE-TRIM EOST-TRIM NAME
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetica/Attitude integrator _Fh__ 1
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetics/Rttitude integrator _Fh__ 2
0.000000e+00 0.000000e+00 3.141593e+00 3.141593e+00 Sky + Wind + Track/Sky/Kinetics/Rttitude integrator Fh 3
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetics/Velocity integrator WK £ 1
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetics/Velocity integrator V. K L 2
IV 0.000000e+00 0.0000002+00 5.300000e+01 5.33887%+01 5ky + Wind + Track/Sky/Hinetics/Velocity integrator V. K £ 3
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Hinetics/Attitude integrator _Ph__ 1
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Hinetics/Attitude integrator _Fh__ 2
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Attitude integrator Fh 3
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Velocity integrator V. K £ 1
0.000000e+00 0.000000=+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Velocity integrator V K £ 2
IV 0.000000e+00 0.0000002+00 5.300000e+01 5.33887%+01 Diver + Wind + Track/Diver/Kinetics/Velocity integrator V K T 3
TV 0.000000e+00 0.000000e+00 -5.100000e+01 -5.222213e+01 Attitude and Altitude controller/AZltitude controller integrator
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Position integrator s g 1
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Position integrator _s g 2
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Position integrator _s_g_ 3
0.000000e+00 0.000000e+00 5.000000e+00 5.000000e+00 Sky + Wind + Track/Sky/Kinetica/Poaition integrator _35_g 1
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Hinetics/Position integrator
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetics/Position integrator _s g_
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetics/Rotaticnal wvelocity integrator
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetica/Rotaticnal welocity integrator
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Sky/Kinetica/Rotatiocnal velocity integrator _{
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Wind/Turbulence/Tiefpass
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Wind/Turbulence/Tiefpassl
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Wind/Turbulence/Tiefpass2
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Rotational velocity integrator Om K f 1
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetica/Rotational velocity integrator Om K f 2
0.000000e+00 0.0000002+00 0.000000e+00 0.000000e+00 Diver + Wind + Track/Diver/Kinetics/Rotational velocity integrator Om K f 3
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Wind/Turbulence/Tiefpass
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Wind/Turbulence/Tiefpassl
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 Sky + Wind + Track/Wind/Turbulence/Iiefpassz
DERIVATIVE
FRE-TRIM BOST-TRIM HAME
0.000000e+00 0.000000e+00 Deriv. of Sky + Wind + Track/Sky/Kinetics/Attitude integrator _Fh
0.000000e+00 0.000000e+00 Deriwv. of Sky + Wind + Track/Sky/Kinetica/Attitude integrator _Fh
0.000000e+00 0.000000e+00 Deriv. of Sky + Wind + Track/Sky/Kinetica/Attitude integrator _Fh
0.000000e+00 §.534773e-17 Deriv. of Sky + Wind + Track/Sky/Hinetics/Velocity integrator V K £
0.000000e+00 0.000000e+00 Deriv. of Sky + Wind + Track/Sky/Kinetics/Velocity integrator V K £
IR 0.000000e+00 1.421085e-14 Deriwv. of 5ky + Wind + Track/Sky/Kinetics/Velocity integrator V. K £ .
0.000000e+00 0.000000e+00 Deriwv. of Diver + Wind + Track/Diver/Kinetics/Attitude integrator
0.000000e+00 0.000000€+00 Deriwv. of Diver + Wind + Track/Diver/Kinetics/Attitude integrator
0.000000e+00 0.000000e+00 Deriw. of Diver + Wind + Track/Diver/Hinetics/Attitude integrator
0.000000e+00 0.000000e+00 Deriw. of Diver + Wind + Track/Diver/Kinetics/Velocity integrater
0.000000e+00 0.000000e+00 Deriw. of Diver + Wind + Track/Diver/Kinetics/Velocity integrater
TR 0.000000e+00 0.000000e+00 Deriv. of Diver + Wind + Track/Diver/Kinetics/Velocity integrator W K £ |
0.000000e+00 -0.000000e+00 Deriv. of Attitude and Altitude controller/Altitude controller integrator
0.000000e+00 0.000000e+00 Deriv. of Diver + Wind + Track/Diver/Hinetics/Position integrator _s_g_ 1
0.000000e+00 0.000000e+00 Deriv. of Diver + Wind + Track/Diver/Hinetics/Position integrator _s_g__ 2
0.000000e+00 5.333879e+01 Deriv. of Diver + Wind + Track/Diver/Kinetics/Position integrator _s g 3
0.000000e+00 0.000000e+00 Deriwv. of 5ky + Wind + Track/Sky/Kinetics/Position integrator _s_g 1
0.000000e+00 0.000000e+00 Deriwv. of Sky + Wind + Track/Sky/Kinetica/Pogition integrator _s_g_ |
0.000000e+00 5.338879e+01 Deriwv. of Sky + Wind + Track/Sky/Kinetica/Position integrateor _s_g 3
0.000000e+00 0.000000e+00 Deriv. of Sky + Wind + Track/Sky/Hinetics/Rotational welocity integrator Om K f 1
0.000000e+00 -§.534773e-15 Deriv. of Sky + Wind + Track/Sky/Kinetics/Rotational welocity integrator Om K £ 2
0.000000e+00 0.000000e+00 Deriwv. of Sky + Wind + Track/Sky/Kinetics/Rotational velocity integrator Om K f 3
0.000000e+00 4,787847e+00 Deriv. of Diver + Wind + Track/Wind/Turbulence/Tiefpass
0.000000e+00 -3.753322e+00 Deriv. of Diver + Wind + Track/Wind/Turbulence/Tiefpassl
0.000000e+00 -2.480453e+00 Deriwv. of Diver + Wind + Track/Wind/Turbulence/Tiefpass2
0.000000e+00 0.000000e+00 Deriv. of Diver + Wind + Track/Diver/Kinetics/Rotational welocity integrator Om K £ 1
0.000000e+00 0.000000e+00 Deriv. of Diver + Wind + Track/Diver/Kinetics/Rotational welocity integrator Om K £ 2
0.000000e+00 0.000000e+00 Deriv. of Diver + Wind + Track/Diver/Kinetics/Rotaticnal velocity integrator Om K £ 3
0.000000e+00 1.041503e+00 Deriv. of Sky + Wind + Track/Wind/Turbulence/Tiefpass
0.000000e+00 -1.925055e-01 Deriv. of Sky + Wind + Track/Wind/Turbulence/Tiefpassl
0.000000e+00 4.551806e-01 Deriv. of S5ky + Wind + Track/Wind/Turbulence/Tiefpass2
QUIFUT
ERE-TRIM POST-TRIM HAME
IR 0.000000e+00 0.000000e+00 del ¥ K g
v
0K

Figure 4.3.: Trimmod overview

81

Bibliography

1]
2]
3]

[4]

D. How, B. Barbarich-Bacher, and K. Stol, “Design and Analysis of a UAV for
Skydiving.” IEEE Int. Conf. on Unmanned Aircraft Systems (ICUAS’15), 2015.

G. Vallabha. (2016) Real-Time Pacer for Simulink. [Online]. Available: https://de.
mathworks.com/matlabcentral /fileexchange/29107-real-time-pacer-for-simulink

J. J. Buchholz. (2016) Skript Regelungstechnik und Flugregler. [Online]. Available:
http://prof.red /rtfr /skript /skript10.pdf

—— (2016) Transfer graphics handle between methods in Level-2 MATLAB
S-Function. [Online|. Available: https://de.mathworks.com/matlabcentral/answers/
313422-transfer-graphics-handle-between-methods-in-level-2-matlab-s-function

The Mathworks. (2016) Camera Graphics Terminology. [On-
line]. Available: https://de.mathworks.com/help/matlab/visualize/
defining-scenes-with-camera-graphics.html

C. Tornau. (2016) Drehungen um beliebige Achsen mit Hilfe der Rotationsmatrix.
[Online]. Available: http://www.informatikseite.de/animation/nodel4.php
Autodesk Premium. (2016) Male Skydiving - Splayed. [Online|. Available:
http://www.123dapp.com/123C-3D-Model /Male-Skydiving--Splayed /659997

E. Johnson. (2016) Stl file reader. [Online]. Available: https://de.mathworks.com/
matlabcentral /fileexchange /22409-stl-file-reader /content /STLRead /stlread.m

J. J. Buchholz. (2000) trimmod. [Online]. Available: https://de.mathworks.com/
matlabcentral /fileexchange /268-trimmod

82

https://de.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink
https://de.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink
http://prof.red/rtfr/skript/skript10.pdf
https://de.mathworks.com/matlabcentral/answers/313422-transfer-graphics-handle-between-methods-in-level-2-matlab-s-function
https://de.mathworks.com/matlabcentral/answers/313422-transfer-graphics-handle-between-methods-in-level-2-matlab-s-function
https://de.mathworks.com/help/matlab/visualize/defining-scenes-with-camera-graphics.html
https://de.mathworks.com/help/matlab/visualize/defining-scenes-with-camera-graphics.html
http://www.informatikseite.de/animation/node14.php
http://www.123dapp.com/123C-3D-Model/Male-Skydiving--Splayed/659997
https://de.mathworks.com/matlabcentral/fileexchange/22409-stl-file-reader/content/STLRead/stlread.m
https://de.mathworks.com/matlabcentral/fileexchange/22409-stl-file-reader/content/STLRead/stlread.m
https://de.mathworks.com/matlabcentral/fileexchange/268-trimmod
https://de.mathworks.com/matlabcentral/fileexchange/268-trimmod

A. Aerodynamic frame of an axially
symmetric body falling down

V4

Zg

Figure A.1.: Transformation from the body-fixed frame (index f) to the aerodynamic
frame (index a)

e The body falls down in a general z-direction.
e The body is axially symmetric with respect to its zs-axis.
e The apparent airflow (and therefore the drag) point towards the negative z,-axis.

e The z,-axis lies in the z,-zf-plane by definition. As a consequence, the y,-axis lies
in the z ¢-ys-plane.

e The lift points towards the negative z,-axis.

83

e There is no sideslip angle, no side force, no roll moment, and no yawing moment
in the aerodynamic frame. Lift, drag and pitching moment only depend on « (s.
below).

e The direction of rotation (transformation), as shown in figure A.1, is from the
body-fixed frame (index f) to the aerodynamic frame (index a), which is the
opposite direction as used in the norm.

e The first rotation is about the zj-axis in the zs-ys-plane with the (aerodynamic
yaw or azimuth) angle p which can rotate for a full circle: —7 < pu < 7.

e The second rotation is about the y,-axis in the x,-z,-plane with the angle' (of
attack) o which can only rotate for half a circle: 0 < a < 7.

Therefore, the transformation matrix Mg s from the f-system to the a-system is a trans-
formation about a z-axis with the angle pu, followed (as read from the right to the left)
by a transformation about a y-axis with the angle a:

Mgy = My(a) - M, ()

[cosa 0 —sina cosp sinp 0
= 0 1 0 - |—sinpg cosp 0
[sina 0 cosa 0 0 1

CoSQ - COSpt cosa-siny —sino
= —sin p COS [4 0
sina-cosp sina-sing cosa

The opposite transformation matrix Mg, (from the a-frame to the f-frame) is the inverse
(and fortunately also the transpose, because we are dealing with orthogonal matrices)
of Ma fr

-1 T
Mo =M,; =M,
cosa -Ccosft —sinp sina - cos
= |cosa-sinp cosp sina-sinpy (A.1)

—sin o 0 COS &

We now want to express the spherical components of the aerodynamic velocity vector
(Va, «, p) with respect to its Cartesian components (uayf, vas, way) in the body-fixed
frame.

The first spherical component V4 is just the norm of the velocity vector:

Vi = \/uQAf—sz‘f—i-wflf (A.2)

!We could have defined « in the opposite direction to make it point more towards the x s-axis instead
of pointing towards the z,-axis, which would be closer to the norm. On the other hand, phrases like
“from above” or “from below” lose their significance with an axially symmetric body, our definition
follows the right hand rule, and in the end it’s just a question of definition and consequently applying
this definition.

84

The aerodynamic velocity vector expressed in Cartesian coordinates in the body-fixed
frame

uaA UAf
Vag= |va| = |vay (A.3)
w A ¥ wayr

equals the aerodynamic velocity vector expressed in the aerodynamic frame V4, trans-
formed from the aerodynamic frame to the body-fixed frame:

VAf = Mfa : VAa (A4)

Respecting the fact, that the velocity vector only has a z-component in the aerodynamic
frame

Viae= |0 (A.5)

we can use equation (A.1), equation (A.3), and equation (A.5) in equation (A.4):

Uaf [cosa-cosp —sinp sina-cosp 0
vaf | = |cosa-sinpg cosp sino-sinp| - | 0
WAy | —sina 0 COS & V4
[V4 - sina - cos
= | V4 sina-sinp (A.6)
Vy - cosa

The third vector component of equation (A.6)

way = Va-cosa
returns the equation for the angle of attack:

waf
= — A.
(v = arccos (> (A.7)

A

Dividing the second by the first vector component of equation (A.6)

vag Va-sina-sinp

uar Va-sina-cosp

= tan u
returns the equation for the aerodynamic yaw angle:

p = arctan (w) (A.8)

uAf

85

A quick consistency check of equation (A.7) shows that « is indeed zero if the airflow
only has a z-component in the body-fixed frame (w4; = Vy4) and that the yaw angle ;1
is not defined” in that case (3) according to equation (A.8).

A zero yaw angle corresponds to a vas of zero according to equation (A.8), while var =
u 4y mathematically and physically results in a yaw angle of 7. If uay is zero the argument
of the arc tangent becomes infinity and the yaw angle is correctly computed as &7 (sign
depending on the sign of v4f). As usual, we have to use the atan2-function with two

arguments to come up with yaw angles of a magnitude greater than 7.

2Matlab defines atan2 (0, 0) = 0, which is a bit unconventional but quite helpful in our case.

86

	Simulink model
	General overview
	UAV + wind + track
	UAV overview
	Actuator dynamics
	Aerodynamics
	Aerodynamic velocities
	Aerodynamic force unit
	Body
	Vanes
	Shadowing factor of the aerodynamic vanes
	Kinetics
	Translational velocity differential equation
	Position differential equation
	Rotational velocity differential equation
	Attitude differential equation
	Wind
	Translational wind
	Turbulence
	Rotational wind
	Track
	Attitude and altitude controller
	Position controller
	Position command
	2-norm of a vector
	Rotation about x-axis
	Transformation from inertial frame to body-fixed frame
	Transformation from Euler frame to body-fixed frame
	Euler frame to body frame transformation matrix
	Displays
	Diver
	Real-Time Pacer
	sky_diver_dat.m

	Animation
	Animation overview
	sd_sfun.m
	setup
	start
	Figure and Axes
	Hull of the UAV
	Vanes
	Hull display
	x-axis line
	Field of view
	Skydiver
	Video
	Communication structure

	revolve.m
	update
	Hull
	Vanes
	x-axis line
	Skydiver
	Camera
	Field of view (FOV)
	Visibility
	Video

	fov_test.m
	terminate
	vane_rotate
	Roll
	Yaw

	m_fg
	rotation_about_arbitrary_axis

	Skydiver model

	Skydiver flight data
	sky_diver_dat.m

	trimmod
	Documentation
	Syntax
	Description
	Arguments
	Example
	Menu
	Algorithm

	Trimmod overview for UAV and skydiver

	Aerodynamic frame of an axially symmetric body falling down

